Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Anim Behav Sci ; 258: 105825, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36589678

ABSTRACT

Medical detection dogs have a high potential for use as alternative diagnostic tools not only for organic diseases, but also for infectious diseases. However, new variants emerging over time may affect the accuracy and sensitivity of diagnostic methods including medical detection dogs in case of viral pandemics. To the best of our knowledge, this is a pioneer study aimed to investigate diagnostic performances and generalization ability of SARS-CoV-2 detection dogs against the new variant after being trained with the original virus. Two SARS-CoV-2 detection dogs were used in this study. In total, 1002 samples including the Omicron variant were introduced to the dogs using a double-blinded design. Two different refresher training sessions were conducted to train the dogs to identify the scent of the Omicron variant. In the first refreshment training, mixed samples (original virus and Omicron variant) were used. The diagnostic performances of the dogs were significantly increased only after the second refreshment training where only the Omicron variant was introduced. This study illustrates that diagnostic performances of SARS-CoV-2 detection dogs were not consistent over time with the emerging new variants. Thus, refreshment training with new variant(s) should be conducted with every new variant which may affect the diagnostic performances of those dogs in such infectious outbreaks.

2.
Electromagn Biol Med ; 41(4): 389-401, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36062506

ABSTRACT

This study aims to determine whether exposure to non-ionizing radiofrequency fields could induce an adaptive response (AR) in adult mice and to reveal potential molecular mechanisms triggered by RF-induced AR. The study was performed on 24 adult male Swiss-Albino mice. The average mass of the mice was 37 g. Four groups of adult mice, each consisting of 6, were formed. The radiofrequency group (R) and the adaptive response group (RB) were exposed to 900 MHz of global system for mobile communications (GSM) signal at 0.339 W/kg (1 g average specific absorption rate) 4 h/day for 7 days, while the control group (C) and the bleomycin group (B) were not exposed. 20 minutes after the last radiofrequency field (RF) exposure, the mice in the B and RB groups were injected intraperitoneal (ip) bleomycin (BLM), 37.5 mg/kg. All the animals were sacrificed 30 minutes after the BLM injection. Oxidative damage and antioxidant mechanism were subsequently investigated in the blood samples. Changes in the expression of the genes involved in DNA repair were detected in the liver tissue. TUNEL method was used to determine the apoptosis developed by DNA fragmentation in the liver tissue. The RB group, which produced an adaptive response, was compared with the control group. According to the results, the increase of reactive oxygen species (ROS) in the RB group may have played an important role in triggering the adaptive response and producing the required minimum stress level. Furthermore, tumor suppressor 53(p53), oxo guanine DNA glycosylase (OGG-1) levels responsible for DNA repair mechanism genes expression were increased in conjunction with the increase in ROS. The change in the poly (ADP-ribose) polymerase 1 (PARP-1) and glutathione peroxidase 1 (GPx-1) gene expression were not statistically significant. The antioxidant enzyme levels of superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were decreased in the group with adaptive response. According to the data obtained from terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, apoptosis was decreased in the RB group due to the decrease in cell death, which might have resulted from an increase in gene expression responsible for DNA repair mechanisms. The results of our study show that exposure to RF radiation may create a protective reaction against the bleomycin. The minimal oxidative stress due to the RF exposure leads to an adaptive response in the genes that play a role in the DNA repair mechanism and enzymes, enabling the survival of the cell.


Subject(s)
Antioxidants , DNA Repair , Oxidative Stress , Animals , Male , Mice , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Antioxidants/metabolism , Apoptosis/genetics , Bleomycin/adverse effects , Catalase/genetics , Catalase/metabolism , DNA Damage , DNA Glycosylases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Tumor Suppressor Protein p53/metabolism
3.
Electromagn Biol Med ; 41(3): 325-334, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35786241

ABSTRACT

In this study, it is aimed to investigate the effect of radiofrequency radiation (RFR) on apoptotic and antiapoptotic factors under different exposure conditions in human colonic adenocarcinoma cells (Caco-2). We analyzed the effects of 2.5 GHz continuous wave and 3 GPP modulated radiofrequency radiation exposure (15 min on, 15 min off) for 1 h and (1 h on, 1 h off) for 3 hours on Caco-2 cell lines. The cell viability of Caco-2 cells was determined by XTT method. Then, the cells were analyzed by flow cytometry to determine the effects on apoptosis staining with AnnexinV-FITC and PI. Protein expression levels of Bcl-2, Bax, Caspase-3 and Survivin were subsequently analyzed by using flow cytometric methods. Bax, Caspase 8, and Survivin protein levels were also analyzed by western blot. The cell viability rates were not significantly different after 2.5 GHz of RFR exposure for 1 h, but RFR exposure for 3 h at 2.5 GHz frequencies caused a decrease on cell viability of Caco-2 cells. RFR exposure for 1 and 3 hours at 2.5 GHz frequencies resulted in an apoptotic response. Protein analyses of Bcl-2, Bax, Survivin, Caspase-3, and Caspase-8 showed that RFR led to increase the levels of proapoptotic Bax, Caspase-3, and Caspase 8 in Caco-2 cells under different exposure conditions. However, 3-h exposure caused a decrease in antiapoptotic survivin levels. The results of our study indicate that RFR exposure affects the cell death mechanism due to apoptotic pathway.


Subject(s)
Apoptosis , Colorectal Neoplasms , Caco-2 Cells , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 8/pharmacology , Colorectal Neoplasms/radiotherapy , Humans , Proto-Oncogene Proteins c-bcl-2 , Survivin/metabolism , Survivin/pharmacology , bcl-2-Associated X Protein
4.
Electromagn Biol Med ; 41(4): 370-378, 2022 Oct 02.
Article in English | MEDLINE | ID: mdl-35904122

ABSTRACT

Radiofrequency radiation (RFR) as an environmental and physical pollutant may induce vulnerability to toxicity and disturb fetal development. Therefore, the potential health effects of short-term mobile phone like RFR exposure (GSM 1800 MHz; 14 V/m, 2 mW/kg specific absorption rate (SAR) during 15 min/day for a week) during pregnancy and also the development of fetuses were investigated. Hepatic glucose regulation and glutathione-dependent enzymes' capacities were biochemically analyzed in adult (female) and pregnant New Zealand White rabbits. Pregnant rabbits' two-day-old offspring were included to understand their developmental stages under short-term maternal RFR exposure. We analyzed two regulatory enzymes in the oxidative phase of phosphogluconate pathways to interpret the cytosolic NADPH's biosynthesis for maintaining mitochondrial energy metabolism. Moreover, the efficiencies of maternal glutathione-dependent enzymes on both the removal of metabolic disturbances during pregnancy and fetus development were examined. Whole-body RFR exposures were applied to pregnant animals from the 15th to the 22nd day of their gestations, i.e., the maturation periods of tissues and organs for rabbit fetuses. There were significant differences in hepatic glucose regulation and GSH-dependent enzymes' capacities with pregnancy and short-term RFR exposure. Consequently, we observed that intrauterine exposure to RFR might lead to cellular ROS- dependent disturbances in metabolic activity and any deficiency in the intracellular antioxidant (ROS-scavenging) system. This study might be a novel insight into further studies on the possible effects of short-term RF exposure and prenatal development.


Subject(s)
Cell Phone , Environmental Pollutants , Pregnancy , Animals , Female , Rabbits , Antioxidants , NADP , Reactive Oxygen Species , Radio Waves/adverse effects , Glutathione , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...