Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 147(13): 134305, 2017 Oct 07.
Article in English | MEDLINE | ID: mdl-28987118

ABSTRACT

The deficiencies of argon, krypton, and xenon observed in the atmosphere of Titan as well as anticipated in some comets might be related to a scenario of sequestration by H3+ in the gas phase at the early evolution of the solar nebula. The chemical process implied is a radiative association, evaluated as rather efficient in the case of H3+, especially for krypton and xenon. This mechanism of chemical trapping might not be limited to H3+ only, considering that the protonated ions produced in the destruction of H3+ by its main competitors present in the primitive nebula, i.e., H2O, CO, and N2, might also give stable complexes with the noble gases. However the effective efficiency of such processes is still to be proven. Here, the reactivity of the noble gases Ar, Kr, and Xe, with all protonated ions issued from H2O, CO, and N2, expected to be present in the nebula with reasonably high abundances, has been studied with quantum simulation method dynamics included. All of them give stable complexes and the rate coefficients of their radiative associations range from 10-16 to 10-19 cm3 s-1, which is reasonable for such reactions and has to be compared to the rates of 10-16 to 10-18 cm3 s-1, obtained with H3+. We can consider this process as universal for all protonated ions which, if present in the primitive nebula as astrophysical models predict, should act as sequestration agents for all three noble gases with increasing efficiency from Ar to Xe.

SELECTION OF CITATIONS
SEARCH DETAIL
...