Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Drug Deliv ; 17(7): 622-628, 2020.
Article in English | MEDLINE | ID: mdl-32394837

ABSTRACT

BACKGROUND: Compared to polymeric nanoparticles prepared using non-lipid surfactants, lecithin addition forms larger nanoparticles and exhibits higher drug loading and the stability of nanoparticles can be conferred by adding Vitamin E Polyethylene Glycol Succinate (TPGS) into the formulation. AIM: The aim of this study is to prepare Gemcitabine (Gem) loaded lecithin/PLGA nanoparticles. Moreover, the effect of TPGS and sodium cholate (SK) on the preparation of lecithin/PLGA nanoparticles was compared. METHODS: It was found that while PC addition into PLGATPGS nanoparticles formed larger particles (251.3± 6.0 nm for Gem-PLGATPGS NPs and 516,9 ± 3.9 nm for Gem-PLGA-PCTPGS NPs), the particle size of PLGASK nanoparticles was not affected by lecithin addition (p>0.05;). RESULTS: In cytotoxicity studies, it was found that the SK-MES-1 cell inhibition rates of Gem-PLGATPGS NPs, Gem-PLGA-PCTPGS NPs, Gem-PLGASK NPs, Gem-PLGA-PCSK NPs were similar with free Gem (p>0.05;). In cytotoxicity studies, it was found that the encapsulation into nanoparticles did not change the cytotoxicity of the drug. However, higher cellular uptake has been observed when the lecithin was used in the preparation of PLGA nanoparticles. CONCLUSION: Compared with free Gem, the Gem-loaded nanoparticles enhanced the uptake of the drug by SK-MES-1 cells which can increase the effect of gemcitabine for non-small cell lung cancer therapy.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Deoxycytidine/analogs & derivatives , Drug Carriers/chemistry , Lung Neoplasms/drug therapy , Antimetabolites, Antineoplastic/pharmacokinetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Deoxycytidine/administration & dosage , Deoxycytidine/pharmacokinetics , Drug Compounding/methods , Drug Liberation , Humans , Lecithins/chemistry , Lung Neoplasms/pathology , Nanoparticles/chemistry , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Gemcitabine
2.
Saudi Pharm J ; 28(4): 465-472, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32273806

ABSTRACT

Multidrug resistance (MDR) is the most common problem of inadequate therapeutic response in tumor cells. Many trials has been developed to overcome drug efflux by P-glycoprotein (P-gp). For instance, co-administration of a number of drugs called chemosensitizers or MDR modulators with a chemotherapeutic agent to inhibit drug efflux. But for optimal synergy, the drug and inhibitor combination may need to be temporally colocalized in the tumor cells. In this study, we encapsulated the Ver and Dox in PLGA nanoparticles to inhibit the P-gp drug efflux in breast cancer. Moreover, the effect of either Dox solution (DoxS), Dox nanoparticles (DoxNP), DoxS + VerS, DoxNP + VerS, DoxNP + VerNP or Dox-VerNP was evaluated. It was found that co administration of DoxNP with VerNP (70.76%) showed similar cellular uptake of Dox to Dox/Ver combination solution (70.62%). However it is observed that DoxNP + VerNP has the highest apoptotic activity (early apoptotic 13.52 ± 0.06%, late apoptotic 53.94 ± 0.15%) on human breast adenocarcinoma (MCF 7) cells. Hence, it is suggested that DoxNP + VerNP is a promising administration for tumor therapy.

3.
Drug Dev Ind Pharm ; 45(6): 914-921, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30714426

ABSTRACT

Dihydroergotamine mesylate (DHE), ergotamine derivative, has been offered for clinical use to stop or treat symptoms of an emerging migraine as injection for more than a half century. It is shown that bioavailability of DHE greatly changes between the subjects and up to 99% of the orally absorbed dose may be cleared by first pass metabolism. The aim of this study was to design and optimize DHE fast-dissolving sublingual films for migraine treatment. For this purpose pullulan and maltodextrin was chosen as film-forming polymers and propylene glycol as plasticizer. For optimization process Box Behnken design was used. The formed films were free from air bubbles, cuttings, or cracks. Disintegration, mechanical strength and dissolution of films were compared. It is found that pullulan and maltodextrin formed films with the most desired properties at the concentration of 1.5% and 2%. The application of optimum formulation to rabbits showed that bioavailability of formulation is about 23.35% with a tmax 20 min. Due to this fast onset of action and higher bioavailability than oral administration, it is suggested that the polymer combinations of pullulan and maltodextrin formed successful films and were considered as an alternative dosage form for DHE in migraine therapy.


Subject(s)
Dihydroergotamine/pharmacokinetics , Drug Compounding/methods , Excipients/chemistry , Vasoconstrictor Agents/pharmacokinetics , Administration, Sublingual , Animals , Biological Availability , Dihydroergotamine/administration & dosage , Drug Evaluation, Preclinical , Drug Liberation , Female , Glucans/chemistry , Injections, Intravenous , Migraine Disorders/drug therapy , Polysaccharides/chemistry , Rabbits , Solubility , Time Factors , Vasoconstrictor Agents/administration & dosage
4.
J Pharm Biomed Anal ; 142: 74-83, 2017 Aug 05.
Article in English | MEDLINE | ID: mdl-28499152

ABSTRACT

Eletriptan Hydrobromide is a serotonin 5-HT1 receptor agonist and it used for the treatment of migraine headaches with or without aura. Even if the drug is well absorbed after oral administration, it has some drawbacks like first pass metabolism and decrease in bioavailability after migraine attacks. Encapsulation of drug into polymeric nanoparticles is one of the methods for protecting the drug against degradation. The present work described a preparation of Eletriptan Hydrobromide loaded poly (d,l-lactide-co-glycolide) nanoparticles prepared using o/w single emulsion solvent evaporation method. In order to determine the factors affecting the physicochemical properties of the nanoparticles on the particle size of poly (d,l-lactide-co-glycolide) nanoparticles, D-Optimal design is used. Moreover, novel, simple, sensitive, selective, and fully validated chromatographic technique for the quantification of Eletriptan Hydrobromide from Eletriptan Hydrobromide loaded poly(d,l-lactide-co-glycolide) nanoparticles was developed. Poly(d,l-lactide-co-glycolide) concentration, sonication time and sonication energy were found as significant factors (p<0.05) on particle size of nanoparticles. Limit of detection and limit of quantification values were calculated as 0.28µgmL-1and 0.86µgmL-1, respectively.


Subject(s)
Nanoparticles , Lactic Acid , Particle Size , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Pyrrolidines , Tryptamines
SELECTION OF CITATIONS
SEARCH DETAIL
...