Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7(1): 17264, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222413

ABSTRACT

Lithium-ion batteries are crucial to the future of energy storage. However, the energy density of current lithium-ion batteries is insufficient for future applications. Sulfur cathodes and silicon anodes have garnered a lot of attention in the field due their high capacity potential. Although recent developments in sulfur and silicon electrodes show exciting results in half cell formats, neither electrode can act as a lithium source when put together into a full cell format. Current methods toward incorporating lithium in sulfur-silicon full cells involves prelithiating silicon or using lithium sulfide. These methods however, complicate material processing and creates safety hazards. Herein, we present a novel full cell battery architecture that bypasses the issues associated with current methods. This battery architecture gradually integrates controlled amounts of pure lithium into the system by allowing lithium the access to external circuit. A high specific energy density of 350 Wh/kg after 250 cycles at C/10 was achieved using this method. This work should pave the way for future researches into sulfur-silicon full cells.

2.
Chem Commun (Camb) ; 51(56): 11213-6, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26077828

ABSTRACT

Here, we report the first demonstration of atomically thin vertically stacked MoS2/WS2 heterostructures, achieved via a two-step chemical vapour deposition (CVD) growth process. Highly ordered stacking of heterostructure domains and patterned defects have been observed. Computations based on first principles have been performed to understand observed enhanced photoluminescence of the heterostructure.

3.
Chem Commun (Camb) ; 50(76): 11226-9, 2014 Oct 04.
Article in English | MEDLINE | ID: mdl-25116379

ABSTRACT

Oxygen annealing of thick MoS2 films results in randomly oriented and controllable triangular etched shapes, forming pits with uniform etching angles. These etching morphologies differ across the sample based on the defect sites situated on the basal plane surface, forming numerous features in different bulk sample thicknesses.

4.
Nanotechnology ; 22(35): 355701, 2011 Sep 02.
Article in English | MEDLINE | ID: mdl-21817786

ABSTRACT

We studied the photodesorption behavior of pristine and nitric acid (HNO(3)) treated graphene layers fabricated by chemical vapor deposition (CVD). The decrease in electrical conductivity and a negative shift of the Dirac point in graphene layers illuminated with ultraviolet light are caused by molecular photodesorption, while the UV illumination does not degrade the carrier mobility of graphene layers. When graphene layers were treated with concentrated HNO(3), the photodesorption-induced current decrease became less significant than for pristine graphene layers. We suggest this is due to the passivation of oxygen-bearing functionalities to CVD grown graphene structural defects by HNO(3) functionalization, which prevents the further absorption of gas molecules. Our results provide a new strategy for stabilizing the electrical performance of CVD grown large-area graphene layers for applications ranging from nanoelectronics to optoelectronics.

5.
ACS Nano ; 5(5): 3469-74, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21469712

ABSTRACT

Controlling reaction temperature for a set time enables the size of gold nanoparticles autoreduced on the surface of polyaniline nanofibers to be controlled. The size of the gold nanoparticles can be used to tune the electrical bistable memory effect in gold/polyaniline nanofiber composite devices. Turn-on voltages and on/off ratios improve with decreasing nanoparticle size, making this a promising method to enhance performance and create smaller devices. Long-term stability of the composites can be improved by the addition of stabilizers following autoreduction of the gold nanoparticles.


Subject(s)
Aniline Compounds/chemistry , Crystallization/methods , Gold/chemistry , Nanostructures/chemistry , Nanotechnology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Electric Conductivity , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Particle Size
6.
J Transl Med ; 9: 34, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21450109

ABSTRACT

BACKGROUND: Many peptide-based cancer vaccines have been tested in clinical trials with a limited success, mostly due to difficulties associated with peptide stability and delivery, resulting in inefficient antigen presentation. Therefore, the development of suitable and efficient vaccine carrier systems remains a major challenge. METHODS: To address this issue, we have engineered polylactic-co-glycolic acid (PLGA) nanoparticles incorporating: (i) two MHC class I-restricted clinically-relevant peptides, (ii) a MHC class II-binding peptide, and (iii) a non-classical MHC class I-binding peptide. We formulated the nanoparticles utilizing a double emulsion-solvent evaporation technique and characterized their surface morphology, size, zeta potential and peptide content. We also loaded human and murine dendritic cells (DC) with the peptide-containing nanoparticles and determined their ability to present the encapsulated peptide antigens and to induce tumor-specific cytotoxic T lymphocytes (CTL) in vitro. RESULTS: We confirmed that the nanoparticles are not toxic to either mouse or human dendritic cells, and do not have any effect on the DC maturation. We also demonstrated a significantly enhanced presentation of the encapsulated peptides upon internalization of the nanoparticles by DC, and confirmed that the improved peptide presentation is actually associated with more efficient generation of peptide-specific CTL and T helper cell responses. CONCLUSION: Encapsulating antigens in PLGA nanoparticles offers unique advantages such as higher efficiency of antigen loading, prolonged presentation of the antigens, prevention of peptide degradation, specific targeting of antigens to antigen presenting cells, improved shelf life of the antigens, and easy scale up for pharmaceutical production. Therefore, these findings are highly significant to the development of synthetic vaccines, and the induction of CTL for adoptive immunotherapy.


Subject(s)
Antigen Presentation/immunology , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class I/immunology , Immunotherapy/methods , Nanoparticles/chemistry , Neoplasms/therapy , Peptides/immunology , Animals , Biodegradation, Environmental , Cell Differentiation , Cell Line, Tumor , Dendritic Cells/cytology , Dendritic Cells/metabolism , Endocytosis , Humans , Immobilized Proteins/immunology , Lactic Acid/metabolism , Mice , Nanoparticles/ultrastructure , Neoplasms/immunology , Phenotype , Polyglycolic Acid/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer , T-Lymphocytes, Cytotoxic/immunology
7.
Small ; 6(21): 2448-52, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20878792

ABSTRACT

In this work, the synthesis and characterization of three-dimensional hetergeneous graphene nanostructures (HGN) comprising continuous large-area graphene layers and ZnO nanostructures, fabricated via chemical vapor deposition, are reported. Characterization of large-area HGN demonstrates that it consists of 1-5 layers of graphene, and exhibits high optical transmittance and enhanced electrical conductivity. Electron microscopy investigation of the three-dimensional heterostructures shows that the morphology of ZnO nanostructures is highly dependent on the growth temperature. It is observed that ordered crystalline ZnO nanostructures are preferably grown along the <0001> direction. Ultraviolet spectroscopy and photoluminescence spectroscopy indicates that the CVD-grown HGN layers has excellent optical properties. A combination of electrical and optical properties of graphene and ZnO building blocks in ZnO-based HGN provides unique characteristics for opportunities in future optoelectronic devices.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Zinc Oxide/chemistry , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , Nanotechnology/methods
8.
Small ; 6(10): 1150-5, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20473987

ABSTRACT

Patterning of biomolecules on graphene layers could provide new avenues to modulate their electrical properties for novel electronic devices. Single-stranded deoxyribonucleic acids (ssDNAs) are found to act as negative-potential gating agents that increase the hole density in single-layer graphene. Current-voltage measurements of the hybrid ssDNA/graphene system indicate a shift in the Dirac point and "intrinsic" conductance after ssDNA is patterned. The effect of ssDNA is to increase the hole density in the graphene layer, which is calculated to be on the order of 1.8 x 10(12) cm(-2). This increased density is consistent with the Raman frequency shifts in the G-peak and 2D band positions and the corresponding changes in the G-peak full width at half maximum. Ab initio calculations using density functional theory rule out significant charge transfer or modification of the graphene band structure in the presence of ssDNA fragments.


Subject(s)
DNA/chemistry , Graphite/chemistry , Nanotechnology/methods , Spectrum Analysis, Raman
9.
Adv Mater ; 22(6): 769-78, 2010 Feb 09.
Article in English | MEDLINE | ID: mdl-20217787

ABSTRACT

The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key benchmarking criteria with respect to CMOS scaling.


Subject(s)
Electronics , Nanostructures/chemistry , DNA/chemistry , Quantum Dots , Semiconductors
10.
Nanomedicine ; 6(5): 651-61, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20348031

ABSTRACT

Nanoparticles (NPs) are attractive carriers for vaccines. We have previously shown that a short peptide (Hp91) activates dendritic cells (DCs), which are critical for initiation of immune responses. In an effort to develop Hp91 as a vaccine adjuvant with NP carriers, we evaluated its activity when encapsulated in or conjugated to the surface of poly(d,l-lactic-co-glycolic) acid (PLGA) NPs. We found that Hp91, when encapsulated in or conjugated to the surface of PLGA-NPs, not only activates both human and mouse DCs, but is in fact more potent than free Hp91. Hp91 packaged within NPs was about fivefold more potent than the free peptide, and Hp91 conjugated to the surface of NPs was ∼20-fold more potent than free Hp91. Because of their capacity to activate DCs, such NP-Hp91 systems are promising as delivery vehicles for subunit vaccines against infectious disease or cancer. FROM THE CLINICAL EDITOR: In this paper, nanoparticle-based dendritic cell activating vaccines are described and discussed. The authors report that the presented PLGA NP based vaccine constructs increase the potency of the studied vaccine by up to 20-fold, making them promising as delivery vehicles for subunit vaccines against infectious diseases or cancer.


Subject(s)
Dendritic Cells/drug effects , Lactic Acid/chemistry , Nanoparticles/chemistry , Peptides/chemistry , Peptides/pharmacology , Polyglycolic Acid/chemistry , Animals , Cells, Cultured , Dendritic Cells/metabolism , Humans , Mice , Polylactic Acid-Polyglycolic Acid Copolymer
11.
Nanotechnology ; 20(12): 125101, 2009 Mar 25.
Article in English | MEDLINE | ID: mdl-19420458

ABSTRACT

With the aim of improving the amount and delivery efficiency of genes taken by carbon nanotubes into human cancer cells, different generations of polyamidoamine dendrimer modified multi-walled carbon nanotubes (dMNTs) were fabricated, and characterized by high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis, revealing the presence of dendrimer capped on the surface of carbon nanotubes. The dMNTs fully conjugated with FITC-labeled antisense c-myc oligonucleotides (asODN), those resultant asODN-dMNTs composites were incubated with human breast cancer cell line MCF-7 cells and MDA-MB-435 cells, and liver cancer cell line HepG2 cells, and confirmed to enter into tumor cells within 15 min by laser confocal microscopy. These composites inhibited the cell growth in time- and dose-dependent means, and down-regulated the expression of the c-myc gene and C-Myc protein. Compared with the composites of CNT-NH(2)-asODN and dendrimer-asODN, no. 5 generation of dendrimer-modified MNT-asODN composites exhibit maximal transfection efficiencies and inhibition effects on tumor cells. The intracellular gene transport and uptake via dMNTs should be generic for the mammalian cell lines. The dMNTs have potentials in applications such as gene or drug delivery for cancer therapy and molecular imaging.


Subject(s)
Gene Transfer Techniques , Nanotubes, Carbon/chemistry , Polyamines/chemistry , Analysis of Variance , Blotting, Western , Cell Line, Tumor , Cell Proliferation , Dendrimers , Dose-Response Relationship, Drug , Down-Regulation , Gene Expression Regulation, Neoplastic , Genes, myc , Humans , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Nanotubes, Carbon/ultrastructure , Neoplasms , Polymerase Chain Reaction , Spectrum Analysis
12.
Chembiochem ; 10(3): 503-10, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19156786

ABSTRACT

Particles to the rescue! The construction of cationic amino acid motifs on the surface of bacteriophage Qbeta by genetic engineering or chemical conjugation gives particles that are potent inhibitors of the anticoagulant action of heparin, which is a common anticlotting agent subject to clinical overdose.Polyvalent interactions allow biological structures to exploit low-affinity ligand-receptor binding events to affect physiological responses. We describe here the use of bacteriophage Qbeta as a multivalent platform for the display of polycationic motifs that act as heparin antagonists. Point mutations to the coat protein allowed us to generate capsids bearing the K16M, T18R, N10R, or D14R mutations; because 180 coat proteins form the capsid, the mutants provide a spectrum of particles differing in surface charge by as much as +540 units (K16M vs. D14R). Whereas larger poly-Arg insertions (for example, C-terminal Arg(8)) did not yield intact virions, it was possible to append chemically synthesized oligo-Arg peptides to stable wild-type (WT) and K16M platforms. Heparin antagonism by the particles was evaluated by using the activated partial thrombin time (aPTT) clotting assay; this revealed that T18R, D14R, and WT-(R(8)G(2))(95) were the most effective at disrupting heparin-mediated anticoagulation (>95 % inhibition). This activity agreed with measurements of zeta potential (ZP) and retention time on cation exchange chromatography for the genetic constructs, which distribute their added positive charge over the capsid surface (+180 and +360 for T18R and D14R relative to WT). The potent activity of WT-(R(8)G(2))(95), despite its relatively diminished overall surface charge is likely a consequence of the particle's presentation of locally concentrated regions with high positive charge density that interact with heparin's extensively sulfated domains. The engineered cationic capsids retained their ability to inhibit heparin at high concentrations and showed no anticlotting activity of the kind that limits the utility of antiheparin polycationic agents that are currently in clinical use.


Subject(s)
Allolevivirus/chemistry , Amino Acid Motifs , Cations/chemistry , Heparin/chemistry , Allolevivirus/genetics , Capsid/chemistry , Chromatography, Ion Exchange , Heparin/genetics , Models, Molecular , Molecular Structure , Point Mutation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...