Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Protein Sci ; 32(9): e4759, 2023 09.
Article in English | MEDLINE | ID: mdl-37574787

ABSTRACT

Proteins gain optimal fitness such as foldability and function through evolutionary selection. However, classical studies have found that evolutionarily designed protein sequences alone cannot guarantee foldability, or at least not without considering local contacts associated with the initial folding steps. We previously showed that foldability and function can be restored by removing frustration in the folding energy landscape of a model WW domain protein, CC16, which was designed based on Statistical Coupling Analysis (SCA). Substitutions ensuring the formation of five local contacts identified as "on-path" were selected using the closest homolog native folded sequence, N21. Surprisingly, the resulting sequence, CC16-N21, bound to Group I peptides, while N21 did not. Here, we identified single-point mutations that enable N21 to bind a Group I peptide ligand through structure and dynamic-based computational design. Comparison of the docked position of the CC16-N21/ligand complex with the N21 structure showed that residues at positions 9 and 19 are important for peptide binding, whereas the dynamic profiles identified position 10 as allosterically coupled to the binding site and exhibiting different dynamics between N21 and CC16-N21. We found that swapping these positions in N21 with matched residues from CC16-N21 recovers nature-like binding affinity to N21. This study validates the use of dynamic profiles as guiding principles for affecting the binding affinity of small proteins.


Subject(s)
Gain of Function Mutation , Proteins , Ligands , WW Domains , Amino Acid Sequence , Proteins/chemistry , Peptides/chemistry , Protein Folding
2.
Protein Sci ; 32(8): e4700, 2023 08.
Article in English | MEDLINE | ID: mdl-37313628

ABSTRACT

We investigated the relationship between mutations and dynamics in Escherichia coli dihydrofolate reductase (DHFR) using computational methods. Our study focused on the M20 and FG loops, which are known to be functionally important and affected by mutations distal to the loops. We used molecular dynamics simulations and developed position-specific metrics, including the dynamic flexibility index (DFI) and dynamic coupling index (DCI), to analyze the dynamics of wild-type DHFR and compared our results with existing deep mutational scanning data. Our analysis showed a statistically significant association between DFI and mutational tolerance of the DHFR positions, indicating that DFI can predict functionally beneficial or detrimental substitutions. We also applied an asymmetric version of our DCI metric (DCIasym ) to DHFR and found that certain distal residues control the dynamics of the M20 and FG loops, whereas others are controlled by them. Residues that are suggested to control the M20 and FG loops by our DCIasym metric are evolutionarily nonconserved; mutations at these sites can enhance enzyme activity. On the other hand, residues controlled by the loops are mostly deleterious to function when mutated and are also evolutionary conserved. Our results suggest that dynamics-based metrics can identify residues that explain the relationship between mutation and protein function or can be targeted to rationally engineer enzymes with enhanced activity.


Subject(s)
Escherichia coli Proteins , Tetrahydrofolate Dehydrogenase , Tetrahydrofolate Dehydrogenase/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Molecular Dynamics Simulation , Mutation
3.
Biophys J ; 122(14): 2938-2947, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36726312

ABSTRACT

Sequencing of the protein coding genome has revealed many different missense mutations of human proteins and different population frequencies of corresponding haplotypes, which consist of different sets of those mutations. Here, we present evidence for pairwise intramolecular epistasis (i.e., nonadditive interactions) between many such mutations through an analysis of protein dynamics. We suggest that functional compensation for conserving protein dynamics is a likely evolutionary mechanism that maintains high-frequency mutations that are individually nonneutral but epistatically compensating within proteins. This analysis is the first of its type to look at human proteins with specific high population frequency mutations and examine the relationship between mutations that make up that observed high-frequency protein haplotype. Importantly, protein dynamics revealed a separation between high and low frequency haplotypes within a target protein cytochrome P450 2A7, with the high-frequency haplotypes showing behavior closer to the wild-type protein. Common protein haplotypes containing two mutations display dynamic compensation in which one mutation can correct for the dynamic effects of the other. We also utilize a dynamics-based metric, EpiScore, that evaluates the epistatic interactions and allows us to see dynamic compensation within many other proteins.


Subject(s)
Biological Evolution , Epistasis, Genetic , Humans , Mutation
4.
J Phys Chem B ; 127(3): 616-622, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36633931

ABSTRACT

Previous studies of the flexibility of ancestral proteins suggest that proteins evolve their function by altering their native state ensemble. Here, we propose a more direct method to analyze such changes during protein evolution by comparing thermally activated vibrations at frequencies below 6 THz, which report on the dynamics of collective protein modes. We analyzed the backbone vibrational density of states of ancestral and extant ß-lactamases and thioredoxins and observed marked changes in the vibrational spectrum in response to evolution. Coupled with previously observed changes in protein flexibility, the observed shifts of vibrational mode densities suggest that protein dynamics and dynamical allostery are critical factors for the evolution of enzymes with specialized catalytic and biophysical properties.


Subject(s)
Proteins , Vibration , beta-Lactamases
5.
Elife ; 112022 12 06.
Article in English | MEDLINE | ID: mdl-36472898

ABSTRACT

We develop integrated co-evolution and dynamic coupling (ICDC) approach to identify, mutate, and assess distal sites to modulate function. We validate the approach first by analyzing the existing mutational fitness data of TEM-1 ß-lactamase and show that allosteric positions co-evolved and dynamically coupled with the active site significantly modulate function. We further apply ICDC approach to identify positions and their mutations that can modulate binding affinity in a lectin, cyanovirin-N (CV-N), that selectively binds to dimannose, and predict binding energies of its variants through Adaptive BP-Dock. Computational and experimental analyses reveal that binding enhancing mutants identified by ICDC impact the dynamics of the binding pocket, and show that rigidification of the binding residues compensates for the entropic cost of binding. This work suggests a mechanism by which distal mutations modulate function through dynamic allostery and provides a blueprint to identify candidates for mutagenesis in order to optimize protein function.


Subject(s)
Exercise
6.
PLoS Comput Biol ; 18(4): e1010006, 2022 04.
Article in English | MEDLINE | ID: mdl-35389981

ABSTRACT

Many pathogenic missense mutations are found in protein positions that are neither well-conserved nor fall in any known functional domains. Consequently, we lack any mechanistic underpinning of dysfunction caused by such mutations. We explored the disruption of allosteric dynamic coupling between these positions and the known functional sites as a possible mechanism for pathogenesis. In this study, we present an analysis of 591 pathogenic missense variants in 144 human enzymes that suggests that allosteric dynamic coupling of mutated positions with known active sites is a plausible biophysical mechanism and evidence of their functional importance. We illustrate this mechanism in a case study of ß-Glucocerebrosidase (GCase) in which a vast majority of 94 sites harboring Gaucher disease-associated missense variants are located some distance away from the active site. An analysis of the conformational dynamics of GCase suggests that mutations on these distal sites cause changes in the flexibility of active site residues despite their distance, indicating a dynamic communication network throughout the protein. The disruption of the long-distance dynamic coupling caused by missense mutations may provide a plausible general mechanistic explanation for biological dysfunction and disease.


Subject(s)
Mutation, Missense , Proteins , Catalytic Domain/genetics , Humans , Mutation , Mutation, Missense/genetics , Proteins/chemistry
7.
Biophys J ; 121(8): 1483-1492, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35300968

ABSTRACT

The SARS-CoV-2 coronavirus has become one of the most immediate and widely studied systems since its identification and subsequent global outbreak from 2019 to 2022. In an effort to understand the biophysical changes as a result of mutations, the mechanistic details of multiple different proteins within the SARS-CoV-2 virus have been studied and compared with SARS-CoV-1. Focusing on the main protease (mPro), we explored the long-range dynamics using the Dynamic Coupling Index (DCI) to investigate the dynamic coupling between the catalytic site residues and the rest of the protein, both inter- and intrachain, for the CoV-1 and CoV-2 mPro. We found that there is significant cross-chain coupling between these active sites and specific distal residues in the CoV-2 mPro not present in CoV-1. The enhanced long-distance interactions, particularly between the two chains, suggest subsequently enhanced cooperativity for CoV-2. A further comparative analysis of the dynamic flexibility using the dynamic flexibility index (DFI) between the CoV-1 and CoV-2 mPros shows that the inhibitor binding near active sites induces change in flexibility to a distal region of the protein, opposite in behavior between the two systems; this region becomes more flexible upon inhibitor binding in CoV-1, while it becomes less flexible in the CoV-2 mPro. Upon inspection, we show that, on average, the dynamic flexibility of the sites substituted from CoV-1 to CoV-2 changes significantly less than the average calculated across all residues within the structure, indicating that the differences in behaviors between the two systems is likely the result of allosteric influence, in which the new substitutions in CoV-2 induce flexibility and dynamic changes elsewhere in the structure.


Subject(s)
COVID-19 , Protease Inhibitors , Endopeptidases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology , SARS-CoV-2
9.
Int J Mol Sci ; 22(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809335

ABSTRACT

The relationship between protein motions (i.e., dynamics) and enzymatic function has begun to be explored in ß-lactamases as a way to advance our understanding of these proteins. In a recent study, we analyzed the dynamic profiles of TEM-1 (a ubiquitous class A ß-lactamase) and several ancestrally reconstructed homologues. A chief finding of this work was that rigid residues that were allosterically coupled to the active site appeared to have profound effects on enzyme function, even when separated from the active site by many angstroms. In the present work, our aim was to further explore the implications of protein dynamics on ß-lactamase function by altering the dynamic profile of TEM-1 using computational protein design methods. The Rosetta software suite was used to mutate amino acids surrounding either rigid residues that are highly coupled to the active site or to flexible residues with no apparent communication with the active site. Experimental characterization of ten designed proteins indicated that alteration of residues surrounding rigid, highly coupled residues, substantially affected both enzymatic activity and stability; in contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Our results provide additional insight into the structure-function relationship present in the TEM family of ß-lactamases. Furthermore, the integration of computational protein design methods with analyses of protein dynamics represents a general approach that could be used to extend our understanding of the relationship between dynamics and function in other enzyme classes.


Subject(s)
Mutant Proteins/genetics , Protein Conformation , Protein Engineering , beta-Lactamases/genetics , Amino Acids/genetics , Bacteria/enzymology , Binding Sites/genetics , Catalytic Domain/genetics , Computational Biology , Enzyme Stability/genetics , Escherichia coli/enzymology , Models, Molecular , Molecular Dynamics Simulation , Mutant Proteins/ultrastructure , Sequence Homology, Amino Acid , Structure-Activity Relationship , beta-Lactamases/ultrastructure
10.
Mol Biol Evol ; 38(1): 201-214, 2021 01 04.
Article in English | MEDLINE | ID: mdl-32780837

ABSTRACT

Amino acid substitutions at nonconserved protein positions can have noncanonical and "long-distance" outcomes on protein function. Such outcomes might arise from changes in the internal protein communication network, which is often accompanied by changes in structural flexibility. To test this, we calculated flexibilities and dynamic coupling for positions in the linker region of the lactose repressor protein. This region contains nonconserved positions for which substitutions alter DNA-binding affinity. We first chose to study 11 substitutions at position 52. In computations, substitutions showed long-range effects on flexibilities of DNA-binding positions, and the degree of flexibility change correlated with experimentally measured changes in DNA binding. Substitutions also altered dynamic coupling to DNA-binding positions in a manner that captured other experimentally determined functional changes. Next, we broadened calculations to consider the dynamic coupling between 17 linker positions and the DNA-binding domain. Experimentally, these linker positions exhibited a wide range of substitution outcomes: Four conserved positions tolerated hardly any substitutions ("toggle"), ten nonconserved positions showed progressive changes from a range of substitutions ("rheostat"), and three nonconserved positions tolerated almost all substitutions ("neutral"). In computations with wild-type lactose repressor protein, the dynamic couplings between the DNA-binding domain and these linker positions showed varied degrees of asymmetry that correlated with the observed toggle/rheostat/neutral substitution outcomes. Thus, we propose that long-range and noncanonical substitutions outcomes at nonconserved positions arise from rewiring long-range communication among functionally important positions. Such calculations might enable predictions for substitution outcomes at a range of nonconserved positions.


Subject(s)
Amino Acid Substitution , Evolution, Molecular , Lac Repressors/genetics
11.
Entropy (Basel) ; 22(6)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-33286439

ABSTRACT

Understanding the underlying mechanisms behind protein allostery and non-additivity of substitution outcomes (i.e., epistasis) is critical when attempting to predict the functional impact of mutations, particularly at non-conserved sites. In an effort to model these two biological properties, we extend the framework of our metric to calculate dynamic coupling between residues, the Dynamic Coupling Index (DCI) to two new metrics: (i) EpiScore, which quantifies the difference between the residue fluctuation response of a functional site when two other positions are perturbed with random Brownian kicks simultaneously versus individually to capture the degree of cooperativity of these two other positions in modulating the dynamics of the functional site and (ii) DCIasym, which measures the degree of asymmetry between the residue fluctuation response of two sites when one or the other is perturbed with a random force. Applied to four independent systems, we successfully show that EpiScore and DCIasym can capture important biophysical properties in dual mutant substitution outcomes. We propose that allosteric regulation and the mechanisms underlying non-additive amino acid substitution outcomes (i.e., epistasis) can be understood as emergent properties of an anisotropic network of interactions where the inclusion of the full network of interactions is critical for accurate modeling. Consequently, mutations which drive towards a new function may require a fine balance between functional site asymmetry and strength of dynamic coupling with the functional sites. These two tools will provide mechanistic insight into both understanding and predicting the outcome of dual mutations.

12.
Annu Rev Biophys ; 49: 267-288, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32075411

ABSTRACT

Advances in sequencing techniques and statistical methods have made it possible not only to predict sequences of ancestral proteins but also to identify thousands of mutations in the human exome, some of which are disease associated. These developments have motivated numerous theories and raised many questions regarding the fundamental principles behind protein evolution, which have been traditionally investigated horizontally using the tip of the phylogenetic tree through comparative studies of extant proteins within a family. In this article, we review a vertical comparison of the modern and resurrected ancestral proteins. We focus mainly on the dynamical properties responsible for a protein's ability to adapt new functions in response to environmental changes. Using the Dynamic Flexibility Index and the Dynamic Coupling Index to quantify the relative flexibility and dynamic coupling at a site-specific, single-amino-acid level, we provide evidence that the migration of hinges, which are often functionally critical rigid sites, is a mechanism through which proteins can rapidly evolve. Additionally, we show that disease-associated mutations in proteins often result in flexibility changes even at positions distal from mutational sites, particularly in the modulation of active site dynamics.


Subject(s)
Evolution, Molecular , Proteins/chemistry , Proteins/metabolism , Allosteric Regulation , Humans , Mutation , Protein Conformation , Proteins/genetics
13.
Int J Mol Sci ; 19(12)2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30501088

ABSTRACT

ß-lactamases are enzymes produced by bacteria to hydrolyze ß-lactam antibiotics as a common mechanism of resistance. Evolution in such enzymes has been rendering a wide variety of antibiotics impotent, therefore posing a major threat. Clinical and in vitro studies of evolution in TEM-1 ß-lactamase have revealed a large number of single point mutations that are responsible for driving resistance to antibiotics and/or inhibitors. The distal locations of these mutations from the active sites suggest that these allosterically modulate the antibiotic resistance. We investigated the effects of resistance driver mutations on the conformational dynamics of the enzyme to provide insights about the mechanism of their long-distance interactions. Through all-atom molecular dynamics (MD) simulations, we obtained the dynamic flexibility profiles of the variants and compared those with that of the wild type TEM-1. While the mutational sites in the variants did not have any direct van der Waals interactions with the active site position S70 and E166, we observed a change in the flexibility of these sites, which play a very critical role in hydrolysis. Such long distance dynamic interactions were further confirmed by dynamic coupling index (DCI) analysis as the sites involved in resistance driving mutations exhibited high dynamic coupling with the active sites. A more exhaustive dynamic analysis, using a selection pressure for ampicillin and cefotaxime resistance on all possible types of substitutions in the amino acid sequence of TEM-1, further demonstrated the observed mechanism. Mutational positions that play a crucial role for the emergence of resistance to new antibiotics exhibited high dynamic coupling with the active site irrespective of their locations. These dynamically coupled positions were neither particularly rigid nor particularly flexible, making them more evolvable positions. Nature utilizes these sites to modulate the dynamics of the catalytic sites instead of mutating the highly rigid positions around the catalytic site.


Subject(s)
beta-Lactamases/genetics , Ampicillin/pharmacology , Cefotaxime/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Microbial Sensitivity Tests , Molecular Dynamics Simulation , Mutation/genetics
14.
PLoS Comput Biol ; 14(11): e1006626, 2018 11.
Article in English | MEDLINE | ID: mdl-30496278

ABSTRACT

The conformational dynamics of proteins is rarely used in methodologies used to predict the impact of genetic mutations due to the paucity of three-dimensional protein structures as compared to the vast number of available sequences. Until now a three-dimensional (3D) structure has been required to predict the conformational dynamics of a protein. We introduce an approach that estimates the conformational dynamics of a protein, without relying on structural information. This de novo approach utilizes coevolving residues identified from a multiple sequence alignment (MSA) using Potts models. These coevolving residues are used as contacts in a Gaussian network model (GNM) to obtain protein dynamics. B-factors calculated using sequence-based GNM (Seq-GNM) are in agreement with crystallographic B-factors as well as theoretical B-factors from the original GNM that utilizes the 3D structure. Moreover, we demonstrate the ability of the calculated B-factors from the Seq-GNM approach to discriminate genomic variants according to their phenotypes for a wide range of proteins. These results suggest that protein dynamics can be approximated based on sequence information alone, making it possible to assess the phenotypes of nSNVs in cases where a 3D structure is unknown. We hope this work will promote the use of dynamics information in genetic disease prediction at scale by circumventing the need for 3D structures.


Subject(s)
Acyl-CoA Dehydrogenase/chemistry , Computational Biology/methods , Disease Susceptibility , Neurons/metabolism , Protein Isoforms , Proteins/chemistry , Animals , Computer Simulation , Cytochrome Reductases/chemistry , Genomics , Humans , Imaging, Three-Dimensional , Molecular Conformation , Muramidase/chemistry , Normal Distribution , Phenotype , Protein Conformation , ROC Curve , Rats
15.
Sci Rep ; 8(1): 17223, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30443038

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

16.
Article in English | MEDLINE | ID: mdl-29735738

ABSTRACT

Thioredoxins (THRXs)-small globular proteins that reduce other proteins-are ubiquitous in all forms of life, from Archaea to mammals. Although ancestral thioredoxins share sequential and structural similarity with the modern-day (extant) homologues, they exhibit significantly different functional activity and stability. We investigate this puzzle by comparative studies of their (ancient and modern-day THRXs') native state ensemble, as quantified by the dynamic flexibility index (DFI), a metric for the relative resilience of an amino acid to perturbations in the rest of the protein. Clustering proteins using DFI profiles strongly resemble an alternative classification scheme based on their activity and stability. The DFI profiles of the extant proteins are substantially different around the α3, α4 helices and catalytic regions. Likewise, allosteric coupling of the active site with the rest of the protein is different between ancient and extant THRXs, possibly explaining the decreased catalytic activity at low pH with evolution. At a global level, we note that the population of low-flexibility (called hinges) and high-flexibility sites increases with evolution. The heterogeneity (quantified by the variance) in DFI distribution increases with the decrease in the melting temperature typically associated with the evolution of ancient proteins to their modern-day counterparts.This article is part of a discussion meeting issue 'Allostery and molecular machines'.


Subject(s)
Evolution, Molecular , Thioredoxins/chemistry , Catalytic Domain , Models, Molecular , Protein Structure, Secondary
17.
Curr Opin Struct Biol ; 51: 106-115, 2018 08.
Article in English | MEDLINE | ID: mdl-29660672

ABSTRACT

Approximations to the sequences of ancestral proteins can be derived from the sequences of their modern descendants. Proteins encoded by such reconstructed sequences can be prepared in the laboratory and subjected to experimental scrutiny. These 'resurrected' ancestral proteins often display remarkable properties, reflecting ancestral adaptations to intra-cellular and extra-cellular environments that differed from the environments hosting modern/extant proteins. Recent experimental and computational work has specifically discussed high stability, substrate and catalytic promiscuity, conformational flexibility/diversity and altered patterns of interaction with other sub-cellular components. In this review, we discuss these remarkable properties as well as recent attempts to explore their biotechnological and protein-engineering potential.


Subject(s)
Biotechnology , Protein Engineering , Proteins/chemistry , Proteins/metabolism , Enzyme Activation , Evolution, Molecular , Intracellular Space , Models, Molecular , Protein Binding , Protein Conformation , Protein Stability , Proteins/genetics
18.
J Phys Chem B ; 122(21): 5623-5629, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29361231

ABSTRACT

Allostery, which is regulation from distant sites, plays a major role in biology. While traditional allostery is described in terms of conformational change upon ligand binding as an underlying principle, it is possible to have allosteric regulations without significant conformational change through modulating the conformational dynamics by altering the local effective elastic modulus of the protein upon ligand binding. Pin1 utilizes this dynamic allostery to regulate its function. It is a modular protein containing a WW domain and a larger peptidyl prolyl isomerase domain (PPIase) that isomerizes phosphoserine/threonine-proline (pS/TP) motifs. The WW domain serves as a docking module, whereas catalysis solely takes place within the PPIase domain. Here, we analyze the change in the dynamic flexibility profile of the PPIase domain upon ligand binding to the WW domain. Substrate binding to the WW domain induces the formation of a new rigid hinge site around the interface of the two domains and loosens the flexibility of a rigid site existing in the Apo form around the catalytic site. This hinge-shift mechanism enhances the dynamic coupling of the catalytic positions with the PPIase domain, where the rest of the domain can cooperatively respond to the local conformational changes around the catalytic site, leading to an increase in catalytic efficiency.


Subject(s)
NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Allosteric Regulation , Amino Acid Motifs , Binding Sites , Catalytic Domain , Humans , Isomerism , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Substrate Specificity
19.
Sci Rep ; 7(1): 10419, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874829

ABSTRACT

Butyrylcholinesterase (BChE) is an enzyme with broad substrate and ligand specificities and may function as a generalized bioscavenger by binding and/or hydrolyzing various xenobiotic agents and toxicants, many of which target the central and peripheral nervous systems. Variants of BChE were rationally designed to increase the enzyme's ability to hydrolyze the psychoactive enantiomer of cocaine. These variants were cloned, and then expressed using the magnICON transient expression system in plants and their enzymatic properties were investigated. In particular, we explored the effects that these site-directed mutations have over the enzyme kinetics with various substrates of BChE. We further compared the affinity of various anticholinesterases including organophosphorous nerve agents and pesticides toward these BChE variants relative to the wild type enzyme. In addition to serving as a therapy for cocaine addiction-related diseases, enhanced bioscavenging against other harmful agents could add to the practicality and versatility of the plant-derived recombinant enzyme as a multivalent therapeutic.


Subject(s)
Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Cocaine/metabolism , Plant Proteins , Recombinant Proteins , Allosteric Regulation , Binding Sites , Butyrylcholinesterase/genetics , Catalytic Domain , Cocaine/chemistry , Genetic Variation , Hydrolysis , Mutation , Protein Binding , Stereoisomerism
20.
J Chem Inf Model ; 56(4): 734-46, 2016 04 25.
Article in English | MEDLINE | ID: mdl-26971620

ABSTRACT

We present an induced fit docking approach called Adaptive BP-Dock that integrates perturbation response scanning (PRS) with the flexible docking protocol of RosettaLigand in an adaptive manner. We first perturb the binding pocket residues of a receptor and obtain a new conformation based on the residue response fluctuation profile using PRS. Next, we dock a ligand to this new conformation by RosettaLigand, where we repeat these steps for several iterations. We test this approach on several protein test sets including difficult unbound docking cases such as HIV-1 reverse transcriptase and HIV-1 protease. Adaptive BP-Dock results show better correlation with experimental binding affinities compared to other docking protocols. Overall, the results imply that Adaptive BP-Dock can easily capture binding induced conformational changes by simultaneous sampling of protein and ligand conformations. This can provide faster and efficient docking of novel targets for rational drug design.


Subject(s)
Enzymes/metabolism , Molecular Docking Simulation/methods , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Enzymes/chemistry , Polysaccharides/metabolism , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...