Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38001707

ABSTRACT

Metabolic reprogramming is one of the main hallmarks of cancer [...].

2.
Front Oncol ; 13: 1167484, 2023.
Article in English | MEDLINE | ID: mdl-37056333
4.
Front Oncol ; 11: 740720, 2021.
Article in English | MEDLINE | ID: mdl-34722292

ABSTRACT

Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the "metabolically fittest" cancer cells from the total cell population. Importantly, ATP-high cancer cells were phenotypically the most aggressive, with enhanced stem-like properties, showing multi-drug resistance and an increased capacity for cell migration, invasion and spontaneous metastasis. In support of these observations, ATP-high cells demonstrated the up-regulation of both mitochondrial proteins and other protein biomarkers, specifically associated with stemness and metastasis. Therefore, we propose that the "energetically fittest" cancer cells would be better able to resist the selection pressure provided by i) a hostile micro-environment and/or ii) conventional chemotherapy, allowing them to be naturally-selected for survival, based on their high ATP content, ultimately driving tumor recurrence and distant metastasis. In accordance with this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a dramatic increase in their ability to metastasize in a pre-clinical model in vivo. Conversely, metastasis was largely prevented by treatment with an FDA-approved drug (Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading to ATP depletion. Clinically, these new therapeutic approaches could have important implications for preventing treatment failure and avoiding cancer cell dormancy, by employing ATP-depletion therapy, to target even the fittest cancer cells.

5.
Front Oncol ; 10: 1528, 2020.
Article in English | MEDLINE | ID: mdl-33042796

ABSTRACT

Here, we describe the chemical synthesis and biological activity of a new Doxycycline derivative, designed specifically to more effectively target cancer stem cells (CSCs). In this analog, a myristic acid (14 carbon) moiety is covalently attached to the free amino group of 9-amino-Doxycycline. First, we determined the IC50 of Doxy-Myr using the 3D-mammosphere assay, to assess its ability to inhibit the anchorage-independent growth of breast CSCs, using MCF7 cells as a model system. Our results indicate that Doxy-Myr is >5-fold more potent than Doxycycline, as it appears to be better retained in cells, within a peri-nuclear membranous compartment. Moreover, Doxy-Myr did not affect the viability of the total MCF7 cancer cell population or normal fibroblasts grown as 2D-monolayers, showing remarkable selectivity for CSCs. Using both gram-negative and gram-positive bacterial strains, we also demonstrated that Doxy-Myr did not show antibiotic activity, against Escherichia coli and Staphylococcus aureus. Interestingly, other complementary Doxycycline amide derivatives, with longer (16 carbon; palmitic acid) or shorter (12 carbon; lauric acid) fatty acid chain lengths, were both less potent than Doxy-Myr for the targeting of CSCs. Finally, using MDA-MB-231 cells, we also demonstrate that Doxy-Myr has no appreciable effect on tumor growth, but potently inhibits tumor cell metastasis in vivo, with little or no toxicity. In summary, by using 9-amino-Doxycycline as a scaffold, here we have designed new chemical entities for their further development as anti-cancer agents. These compounds selectively target CSCs, e.g., Doxy-Myr, while effectively minimizing the risk of driving antibiotic resistance. Taken together, our current studies provide proof-of-principle, that existing FDA-approved drugs can be further modified and optimized, to successfully target the anchorage-independent growth of CSCs and to prevent the process of spontaneous tumor cell metastasis.

6.
Aging (Albany NY) ; 12(11): 10162-10179, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32452826

ABSTRACT

Cancer stem cells (CSCs) have been proposed to be responsible for tumor recurrence, distant metastasis and drug-resistance, in the vast majority of cancer patients. Therefore, there is an urgent need to identify new drugs that can target and eradicate CSCs. To identify new molecular targets that are unique to CSCs, we previously compared MCF7 2D-monolayers with 3D-mammospheres, which are enriched in CSCs. We observed that 25 mitochondrial-related proteins were >100-fold over-expressed in 3D-mammospheres. Here, we used these 25 proteins to derive short gene signatures to predict distant metastasis (in N=1,395 patients) and tumor recurrence (in N=3,082 patients), by employing a large collection of transcriptional profiling data from ER(+) breast cancer patients. This analysis resulted in a 4-gene signature for predicting distant metastasis, with a hazard ratio of 1.91-fold (P=2.2e-08). This provides clinical evidence to support a role for CSC mitochondria in metastatic dissemination. Next, we employed a panel of mitochondrial inhibitors, previously shown to target mitochondria and selectively inhibit 3D-mammosphere formation in MCF7 cells and cell migration in MDA-MB-231 cells. Remarkably, these five mitochondrial inhibitors had only minor effects or no effect on MDA-MB-231 tumor formation, but preferentially and selectively inhibited tumor cell metastasis, without causing significant toxicity. Mechanistically, all five mitochondrial inhibitors have been previously shown to induce ATP-depletion in cancer cells. Since 3 of these 5 inhibitors were designed to target the large mitochondrial ribosome, we next interrogated whether genes encoding the large mitochondrial ribosomal proteins (MRPL) also show prognostic value in the prediction of distant metastasis in both ER(+) and ER(-) breast cancer patients. Interestingly, gene signatures composed of 6 to 9 MRPL mRNA-transcripts were indeed sufficient to predict distant metastasis, tumor recurrence and Tamoxifen resistance. These gene signatures could be useful as companion diagnostics to assess which patients may benefit most from anti-mito-ribosome therapy. Overall, our studies provide the necessary proof-of-concept, and in vivo functional evidence, that mitochondrial inhibitors can successfully and selectively target the biological process of cancer cell metastasis. Ultimately, we envision that mitochondrial inhibitors could be employed to develop new treatment protocols, for clinically providing metastasis prophylaxis, to help prevent poor clinical outcomes in cancer patients.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Mitochondria/drug effects , Mitochondrial Ribosomes/drug effects , Neoplasm Metastasis/prevention & control , Neoplasm Recurrence, Local/prevention & control , Neoplastic Stem Cells/drug effects , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/drug therapy , Drug Screening Assays, Antitumor , Female , Gene Expression Profiling , Humans , MCF-7 Cells , Mitochondria/metabolism , Mitochondrial Proteins/analysis , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Ribosomes/metabolism , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/therapeutic use , Prognosis , Proof of Concept Study , Ribosomal Proteins/analysis , Ribosomal Proteins/antagonists & inhibitors , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Spheroids, Cellular
7.
Front Oncol ; 9: 615, 2019.
Article in English | MEDLINE | ID: mdl-31440463

ABSTRACT

Elevated mitochondrial biogenesis and/or metabolism are distinguishing features of cancer cells, as well as Cancer Stem Cells (CSCs), which are involved in tumor initiation, metastatic dissemination, and therapy resistance. In fact, mitochondria-impairing agents can be used to hamper CSCs maintenance and propagation, toward better control of neoplastic disease. Tri-Phenyl-Phosphonium (TPP)-based mitochondrially-targeted compounds are small non-toxic and biologically active molecules that are delivered to and accumulated within the mitochondria of living cells. Therefore, TPP-derivatives may represent potentially "powerful" candidates to block CSCs. Here, we evaluate the metabolic and biological effects induced by the TPP-derivative, termed Dodecyl-TPP (d-TPP) on breast cancer cells. By employing the 3D mammosphere assay in MCF-7 cells, we demonstrate that treatment with d-TPP dose-dependently inhibits the propagation of breast CSCs in suspension. Also, d-TPP targets adherent "bulk" cancer cells, by decreasing MCF-7 cell viability. The analysis of metabolic flux using Seahorse Xfe96 revealed that d-TPP potently inhibits the mitochondrial oxygen consumption rate (OCR), while simultaneously shifting cell metabolism toward glycolysis. Thereafter, we exploited this ATP depletion phenotype and strict metabolic dependency on glycolysis to eradicate the residual glycolytic CSC population, by using additional metabolic stressors. More specifically, we applied a combination strategy based on treatment with d-TPP, in the presence of a selected panel of natural and synthetic compounds, some of which are FDA-approved, that are known to behave as glycolysis (Vitamin C, 2-Deoxy-Glucose) and OXPHOS (Doxycyline, Niclosamide, Berberine) inhibitors. This two-hit scheme effectively decreased CSC propagation, at concentrations of d-TPP toxic only for cancer cells, but not for normal cells, as evidenced using normal human fibroblasts (hTERT-BJ1) as a reference point. Taken together, d-TPP halts CSCs propagation and targets "bulk" cancer cells, without eliciting the relevant undesirable off-target effects in normal cells. These observations pave the way for further exploring the potential of TPP-based derivatives in cancer therapy. Moreover, TPP-based compounds should be investigated for their potential to discriminate between "normal" and "malignant" mitochondria, suggesting that distinct biochemical, and metabolic changes in these organelles could precede specific normal or pathological phenotypes. Lastly, our data validate the manipulation of the energetic machinery as useful tool to eradicate CSCs.

8.
Aging (Albany NY) ; 11(14): 4801-4835, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31311889

ABSTRACT

Using proteomics analysis, we previously compared MCF7 breast cancer cells grown as 3D tumor spheres, with the same cell line grown as monolayers. Our results indicated that during 3D anchorage-independent growth, the cellular machinery associated with i) mitochondrial biogenesis and ii) ribosomal biogenesis, were both significantly increased. Here, for simplicity, we refer to these two new oncogenic hallmarks as "mito-stemness" and "ribo-stemness" features. We have now applied this same type of strategy to begin to understand how fibroblasts and MCF7 breast cancer cells change their molecular phenotype, when they are co-cultured together. We have previously shown that MCF7-fibroblast co-cultures are a valuable model of resistance to apoptosis induced by hormonal therapies, such as Tamoxifen and Fulvestrant. Here, we directly show that these mixed co-cultures demonstrate the induction of mito-stemness and ribo-stemness features, likely reflecting a mechanism for cancer cells to increase their capacity for accumulating biomass. In accordance with the onset of a stem-like phenotype, KRT19 (keratin 19) was induced by ~6-fold during co-culture. KRT19 is a well-established epithelial CSC marker that is used clinically to identify metastatic breast cancer cells in sentinel lymph node biopsies. The potential molecular therapeutic targets that we identified by label-free proteomics of MCF7-fibroblast co-cultures were then independently validated using a bioinformatics approach. More specifically, we employed publically-available transcriptional profiling data derived from primary tumor samples from breast cancer patients, which were previously subjected to laser-capture micro-dissection, to physically separate breast cancer cells from adjacent tumor stroma. This allowed us to directly validate that the proteins up-regulated in this co-culture model were also transcriptionally elevated in patient-derived breast cancer cells in vivo. This powerful approach for target identification and translational validation, including the use of patient outcome data, can now be applied to other tumor types as well, to validate new therapeutic targets that are more clinically relevant, for patient benefit. Moreover, we discuss the therapeutic implications of these findings for new drug development, drug repurposing and Tamoxifen-resistance, to effectively target mito-stemness and ribo-stemness features in breast cancer patients. We also discuss the broad implications of this "organelle biogenesis" approach to cancer therapy.


Subject(s)
Breast Neoplasms , Cellular Reprogramming/physiology , Mitochondria/metabolism , Neoplastic Stem Cells/physiology , Ribosomes/metabolism , Coculture Techniques , Drug Resistance, Neoplasm/physiology , Female , Fibroblasts/metabolism , Humans , MCF-7 Cells , Organelle Biogenesis , Phenotype , Proteomics
9.
Aging (Albany NY) ; 10(11): 3294-3307, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30428454

ABSTRACT

Here, we employed a "senolytic" assay system as a screening tool, with the goal of identifying and repurposing FDA-approved antibiotics, for the targeting of the senescent cell population. Briefly, we used two established human fibroblast cell lines (MRC-5 and/or BJ) as model systems to induce senescence, via chronic treatment with a DNA-damaging agent, namely BrdU (at a concentration of 100 µM for 8 days). Cell viability was then monitored by using the SRB assay, to measure protein content. As a consequence of this streamlined screening strategy, we identified Azithromycin and Roxithromycin as two novel clinically-approved senolytic drugs. However, Erythromycin - the very closely-related parent compound - did not show any senolytic activity, highlighting the dramatic specificity of these interactions. Interestingly, we also show that Azithromycin treatment of human fibroblasts was indeed sufficient to strongly induce both aerobic glycolysis and autophagy. However, the effects of Azithromycin on mitochondrial oxygen consumption rates (OCR) were bi-phasic, showing inhibitory activity at 50 µM and stimulatory activity at 100 µM. These autophagic/metabolic changes induced by Azithromycin could mechanistically explain its senolytic activity. We also independently validated our findings using the xCELLigence real-time assay system, which measures electrical impedance. Using this approach, we see that Azithromycin preferentially targets senescent cells, removing approximately 97% of them with great efficiency. This represents a near 25-fold reduction in senescent cells. Finally, we also discuss our current results in the context of previous clinical findings that specifically document the anti-inflammatory activity of Azithromycin in patients with cystic fibrosis - a genetic lung disorder that results in protein mis-folding mutations that cause protein aggregation.


Subject(s)
Azithromycin/pharmacology , Cellular Senescence/drug effects , Fibroblasts/drug effects , Roxithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Autophagy , Biological Assay , Cell Line , Fibroblasts/physiology , Humans
10.
Cell Cycle ; 17(17): 2091-2100, 2018.
Article in English | MEDLINE | ID: mdl-30257595

ABSTRACT

Here, we wish to propose a new systematic approach to cancer therapy, based on the targeting of mitochondrial metabolism, especially in cancer stem cells (CSCs). In the future, we envision that anti-mitochondrial therapy would ultimately be practiced as an add-on to more conventional therapy, largely for the prevention of tumor recurrence and cancer metastasis. This mitochondrial based oncology platform would require a panel of FDA-approved therapeutics (e.g. Doxycycline) that can safely be used to inhibit mitochondrial OXPHOS and/or biogenesis in CSCs. In addition, new therapeutics that target mitochondria could also be developed, to optimize their ability to eradicate CSCs. Finally, in this context, mitochondrial-based biomarkers (i.e. "Mito-signatures") could be utilized as companion diagnostics, to identify high-risk cancer patients at diagnosis, facilitating the early detection of tumor recurrence and the prevention of treatment failure. In summary, we suggest that new clinical trials are warranted to test and possibly implement this emerging treatment strategy, in a variety of human cancer types. This general approach, using FDA-approved antibiotics to target mitochondria, was effective in killing CSCs originating from many different cancer types, including DCIS, breast (ER(+) and ER(-)), prostate, ovarian, lung and pancreatic cancers, as well as melanoma and glioblastoma, among others. Thus, we propose the term MITO-ONC-RX, to describe this anti-mitochondrial platform for targeting CSCs. The use of re-purposed FDA-approved drugs will undoubtedly help to accelerate the clinical evaluation of this approach, as these drugs can move directly into Phase II clinical trials, saving considerable amounts of time (10-15 y) and billions in financial resources.


Subject(s)
Breast Neoplasms/drug therapy , Mitochondria/drug effects , Mitomycin/pharmacology , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Animals , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Humans , Mitochondria/metabolism , Neoplasm Recurrence, Local/drug therapy
11.
Aging (Albany NY) ; 10(2): 229-240, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29466249

ABSTRACT

Tri-phenyl-phosphonium (TPP) is a non-toxic chemical moiety that functionally behaves as a mitochondrial targeting signal (MTS) in living cells. Here, we explored the hypothesis that TPP-related compounds could be utilized to inhibit mitochondria in cancer stem cells (CSCs). We randomly selected 9 TPP-related compounds for screening, using an ATP depletion assay. Based on this approach, five compounds were identified as "positive hits"; two had no detectable effect on ATP production. Remarkably, this represents a >50% hit rate. We validated that the five positive hit compounds all inhibited oxygen consumption rates (OCR), using the Seahorse XFe96 metabolic flux analyzer. Interestingly, these TPP-related compounds were non-toxic and had little or no effect on ATP production in normal human fibroblasts, but selectively targeted adherent "bulk" cancer cells. Finally, these positive hit compounds also inhibited the propagation of CSCs in suspension, as measured functionally using the 3D mammosphere assay. Therefore, these TPP-related compounds successfully inhibited anchorage-independent growth, which is normally associated with a metastatic phenotype. Interestingly, the most effective molecule that we identified contained two TPP moieties (i.e., bis-TPP). More specifically, 2-butene-1,4-bis-TPP potently and selectively inhibited CSC propagation, with an IC-50 < 500 nM. Thus, we conclude that the use of bis-TPP, a "dimeric" mitochondrial targeting signal, may be a promising new approach for the chemical eradication of CSCs. Future studies on the efficacy of 2-butene-1,4-bis-TPP and its derivatives are warranted. In summary, we show that TPP-related compounds provide a novel chemical strategy for effectively killing both i) "bulk" cancer cells and ii) CSCs, while specifically minimizing or avoiding off-target side-effects in normal cells. These results provide the necessary evidence that "normal" mitochondria and "malignant" mitochondria are truly biochemically distinct, removing a significant barrier to therapeutically targeting cancer metabolism.


Subject(s)
Mitochondria/drug effects , Mitochondria/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Onium Compounds/pharmacology , Organophosphorus Compounds/pharmacology , Adenosine Triphosphate/biosynthesis , Cell Survival/drug effects , Humans , MCF-7 Cells/drug effects , Oxygen Consumption/drug effects
12.
Aging (Albany NY) ; 9(12): 2610-2628, 2017 12 16.
Article in English | MEDLINE | ID: mdl-29253841

ABSTRACT

Here, we performed high-throughput drug-screening to identify new non-toxic mitochondrial inhibitors. This screening platform was specifically designed to detect compounds that selectively deplete cellular ATP levels, but have little or no toxic side effects on cell viability. Using this approach, we identified DPI (Diphenyleneiodonium chloride) as a new potential therapeutic agent. Mechanistically, DPI potently blocks mitochondrial respiration by inhibiting flavin-containing enzymes (FMN and FAD-dependent), which form part of Complex I and II. Interestingly, DPI induced a chemo-quiescence phenotype that potently inhibited the propagation of CSCs, with an IC-50 of 3.2 nano-molar. Virtually identical results were obtained using CSC markers, such as CD44 and CD24. We further validated the effects of DPI on cellular metabolism. At 10 nM, DPI inhibited oxidative mitochondrial metabolism (OXPHOS), reducing mitochondrial driven ATP production by >90%. This resulted in a purely glycolytic phenotype, with elevated L-lactate production. We show that this metabolic inflexibility could be rapidly-induced, after only 1 hour of DPI treatment. Remarkably, the mitochondrial inhibitory effects of DPI were reversible, and DPI did not induce ROS production. Cells maintained in DPI for 1 month showed little or no mitochondrial activity, but remained viable. Thus, it appears that DPI behaves as a new type of mitochondrial inhibitor, which maintains cells in a state of metabolic-quiescence or "suspended animation".In conclusion, DPI treatment can be used to acutely confer a mitochondrial-deficient phenotype, which we show effectively depletes CSCs from the heterogeneous cancer cell population. These findings have significant therapeutic implications for potently targeting CSCs, while minimizing toxic side effects. We also discuss the possible implications of DPI for the aging process. Interestingly, previous studies in C. elegans have shown that DPI prevents the accumulation of lipofuscin (an aging-associated hallmark), during the response to oxidative stress. Our current results are consistent with data showing that flavins (FAD, FMN and/or Riboflavin) are auto-fluorescent markers of i) increased mitochondrial "power" (OXPHOS) and ii) elevated CSC activity.Finally, we believe that DPI is one of the most potent and highly selective CSC inhibitors discovered to date. Therefore, our current findings suggest a new impetus to create novel analogues of i) DPI (Diphenyleneiodonium chloride) and ii) DPI-related compounds (Diphenyliodonium chloride), using medicinal chemistry, to optimize this very promising and potent anti-CSC activity. We propose to call these new molecules "Mitoflavoscins".For example, DPI is ~30 times more potent than Palbociclib (IC-50 = 100 nM), which is an FDA-approved CDK4/6 inhibitor, that broadly targets proliferation in any cell type, including CSCs.


Subject(s)
Enzyme Inhibitors/pharmacology , Mitochondria/drug effects , Neoplastic Stem Cells/drug effects , Onium Compounds/pharmacology , Oxidative Phosphorylation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Electron Transport/drug effects , Flavoproteins , Humans , Neoplastic Stem Cells/metabolism , Riboflavin
13.
Oncotarget ; 8(45): 78340-78350, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-29108233

ABSTRACT

Previous studies have now well-established that epithelial cancer cells can utilize ketone bodies (3-hydroxybutyrate and aceto-acetate) as mitochondrial fuels, to actively promote tumor growth and metastatic dissemination. The two critical metabolic enzymes implicated in this process are OXCT1 and ACAT1, which are both mitochondrial proteins. Importantly, over-expression of OXCT1 or ACAT1 in human breast cancer cells is sufficient to genetically drive tumorigenesis and/or lung metastasis, validating that they indeed behave as metabolic "tumor promoters". Here, we decided to target these two enzymes, which give cancer cells the ability to recycle ketone bodies into Acetyl-CoA and, therefore, to produce increased ATP. Briefly, we used computational chemistry (in silico drug design) to select a sub-set of potentially promising compounds that spatially fit within the active site of these enzymes, based on their known 3D crystal structures. These libraries of compounds were then phenotypically screened for their effects on total cellular ATP levels. Positive hits were further validated by metabolic flux analysis. Our results indicated that four of these compounds effectively inhibited mitochondrial oxygen consumption. Two of these compounds also induced a reactive glycolytic phenotype in cancer cells. Most importantly, using the mammosphere assay, we showed that these compounds can be used to functionally inhibit cancer stem cell (CSC) activity and propagation. Finally, our molecular modeling studies directly show how these novel compounds are predicted to bind to the active catalytic sites of OXCT1 and ACAT1, within their Coenzyme A binding site. As such, we speculate that these mitochondrial inhibitors are partially mimicking the structure of Coenzyme A. Thus, we conclude that OXCT1 and ACAT1 are important new therapeutic targets for further drug development and optimization. We propose that this new class of drugs should be termed "mitoketoscins", to reflect that they were designed to target ketone re-utilization and mitochondrial function.

14.
Aging (Albany NY) ; 9(10): 2098-2116, 2017 10 27.
Article in English | MEDLINE | ID: mdl-29080556

ABSTRACT

Here, we used MCF7 cells as a model system to interrogate how MYC/RAS co-operativity contributes to metabolic flux and stemness in breast cancer cells. We compared the behavior of isogenic MCF7 cell lines transduced with c-Myc or H-Ras (G12V), either individually or in combination. Cancer stem cell (CSC) activity was measured using the mammosphere assay. c-Myc augmented both mammosphere formation and mitochondrial respiration, without any effects on glycolytic flux. In contrast, H-Ras (G12V) synergistically augmented both mammosphere formation and glycolysis, but only in combination with c-Myc, directly demonstrating MYC/RAS co-operativity. As c-Myc is known to exert its effects, in part, by stimulating mitochondrial biogenesis, we next examined the effects of another stimulus known to affect mitochondrial biogenesis, i.e. ROS production. To pharmacologically induce oxidative stress, we used Rotenone (a mitochondrial inhibitor) to target mitochondrial complex I. Treatment with Rotenone showed bi-phasic effects; low-dose Rotenone (1 to 2.5 nM) elevated mammosphere formation, while higher doses (10 to 100 nM) were inhibitory. Importantly, the stimulatory effects of Rotenone on CSC propagation were blocked using a mitochondrial-specific anti-oxidant, namely Mito-tempo. Thus, "mild" mitochondrial oxidative stress, originating at Complex I, was sufficient to pheno-copy the effects of c-Myc, effectively promoting CSC propagation. To validate the idea that mitochondrial biogenesis is required to stimulate CSC propagation, we employed Doxycycline, a well-established inhibitor of mitochondrial protein translation. Treatment with Doxycycline was indeed sufficient to block the stimulatory effects of H-Ras (G12V), c-Myc, and Rotenone on CSC propagation. As such, Doxycycline provides a strong rationale for designing new therapeutics to target mitochondrial biogenesis, suggesting a new "mutation-independent" approach to cancer therapy. In support of this notion, most currently successful anti-cancer agents therapeutically target "cell phenotypes", such as increased cell proliferation, rather than specific genetic mutations. Remarkably, we demonstrated that Doxycycline inhibits the effects of diverse oncogenic stimuli, of both i) genetic (MYC/RAS) and ii) environmental (Rotenone) origins. Finally, we discuss the advantages of our "Proteomics-to-Genomics (PTG)" approach for in silico validation of new biomarkers and novel drug targets. In this context, we developed a new Myc-based Mito-Signature consisting of 3 mitochondrial genes (HSPD1; COX5B; TIMM44) for effectively predicting tumor recurrence (HR=4.69; p=2.4e-08) and distant metastasis (HR=4.94; p=2.8e-07), in ER(+) in breast cancer patients. This gene signature could serve as a new companion diagnostic for the early prediction of treatment failure in patients receiving hormonal therapy.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Organelle Biogenesis , Proto-Oncogene Proteins c-myc/metabolism , ras Proteins/metabolism , Breast Neoplasms/metabolism , Humans , MCF-7 Cells , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Proto-Oncogene Proteins c-myc/genetics , Transcriptome , ras Proteins/genetics
15.
Oncotarget ; 8(40): 67457-67472, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978045

ABSTRACT

The "endo-symbiotic theory of mitochondrial evolution" states that mitochondrial organelles evolved from engulfed aerobic bacteria, after millions of years of symbiosis and adaptation. Here, we have exploited this premise to design new antibiotics and novel anti-cancer therapies, using a convergent approach. First, virtual high-throughput screening (vHTS) and computational chemistry were used to identify novel compounds binding to the 3D structure of the mammalian mitochondrial ribosome. The resulting library of ∼880 compounds was then subjected to phenotypic drug screening on human cancer cells, to identify which compounds functionally induce ATP-depletion, which is characteristic of mitochondrial inhibition. Notably, the top ten "hit" compounds define four new classes of mitochondrial inhibitors. Next, we further validated that these novel mitochondrial inhibitors metabolically target mitochondrial respiration in cancer cells and effectively inhibit the propagation of cancer stem-like cells in vitro. Finally, we show that these mitochondrial inhibitors possess broad-spectrum antibiotic activity, preventing the growth of both gram-positive and gram-negative bacteria, as well as C. albicans - a pathogenic yeast. Remarkably, these novel antibiotics also were effective against methicillin-resistant Staphylococcus aureus (MRSA). Thus, this simple, yet systematic, approach to the discovery of mitochondrial ribosome inhibitors could provide a plethora of anti-microbials and anti-cancer therapies, to target drug-resistance that is characteristic of both i) tumor recurrence and ii) infectious disease. In summary, we have successfully used vHTS combined with phenotypic drug screening of human cancer cells to identify several new classes of broad-spectrum antibiotics that target both bacteria and pathogenic yeast. We propose the new term "mitoriboscins" to describe these novel mitochondrial-related antibiotics. Thus far, we have identified four different classes of mitoriboscins, such as: 1) mitoribocyclines, 2) mitoribomycins, 3) mitoribosporins and 4) mitoribofloxins. However, we broadly define mitoriboscins as any small molecule(s) or peptide(s) that bind to the mitoribosome (large or small subunits) and, as a consequence, inhibit mitochondrial function, i.e., mitoribosome inhibitors.

16.
Arch Pharm (Weinheim) ; 350(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28547897

ABSTRACT

A series of novel curcuminoids were synthesised for the first time via a Mannich-3CR/organocatalysed Claisen-Schmidt condensation sequence. Structure-activity relationship (SAR) studies were performed by applying viability assays and holographic microscopic imaging to these curcumin analogues for anti-proliferative activity against A549 and H1975 lung adenocarcinoma cells. The TNFα-induced NF-κB inhibition and autophagy induction effects correlated strongly with the cytotoxic potential of the analogues. Significant inhibition of tumour growth was observed when the most potent analogue 44 was added in liposomes at one-sixth of the maximally tolerated dose in the A549 xenograft model. The novel spectrum of activity of these Mannich curcuminoids warrants further preclinical investigations.


Subject(s)
Antineoplastic Agents/pharmacology , Curcumin/pharmacology , Mannich Bases/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Curcumin/analogs & derivatives , Curcumin/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Mannich Bases/chemistry , Mice , Mice, SCID , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Structure-Activity Relationship
17.
Oncotarget ; 8(6): 9868-9884, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28039467

ABSTRACT

In this report, we systematically examined the role of telomerase activity in lung and ovarian cancer stem cell (CSC) propagation. For this purpose, we indirectly gauged telomerase activity, by linking the hTERT-promoter to eGFP. Using lung (A549) and ovarian (SKOV3) cancer cells, transduced with the hTERT-GFP reporter, we then employed GFP-expression levels to fractionate these cell lines into GFP-high and GFP-low populations. We functionally compared the phenotype of these GFP-high and GFP-low populations. More specifically, we now show that the cancer cells with higher telomerase activity (GFP-high) are more energetically activated, with increased mitochondrial mass and function, as well as increased glycolytic activity. This was further validated and confirmed by unbiased proteomics analysis. Cells with high telomerase activity also showed an increased capacity for stem cell activity (as measured using the 3D-spheroid assay) and cell migration (as measured using a Boyden chamber approach). These enhanced biological phenotypes were effectively inhibited by classical modulators of energy metabolism, which target either i) mitochondrial metabolism (i.e., oligomycin) or ii) glycolysis (i.e., 2-deoxy-glucose), or iii) by using the FDA-approved antibiotic doxycycline, which inhibits mitochondrial biogenesis. Finally, the level of telomerase activity also determined the ability of hTERT-high cells to proliferate, as assessed by measuring DNA synthesis via EdU incorporation. Consistent with these observations, treatment with an FDA-approved CDK4/6 inhibitor (PD-0332991/palbociclib) specifically blocked the propagation of both lung and ovarian CSCs. Virtually identical results were obtained with breast CSCs, which were also highly sensitive to palbociclib at concentrations in the nanomolar range. In summary, CSCs with high telomerase activity are among the most energetically activated, migratory and proliferative cell sub-populations. These observations may provide a mechanistic explanation for tumor metabolic heterogeneity, based on telomerase activity. FDA-approved drugs, such as doxycycline and palbociclib, were both effective at curtailing CSC propagation. Thus, these FDA-approved drugs could be used to target telomerase-high proliferative CSCs, in multiple cancer types. Finally, our experiments also allowed us to distinguish two different cellular populations of hTERT-high cells, one that was proliferative (i.e., replicative immortality) and the other that was non-proliferative (i.e., quiescent). We speculate that the non-proliferative population of hTERT-high cells that we identified could be mechanistically involved in tumor dormancy.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Lung Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Ovarian Neoplasms/drug therapy , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Telomerase/metabolism , A549 Cells , Cell Movement/drug effects , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Dose-Response Relationship, Drug , Energy Metabolism/drug effects , Female , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/pathology , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/enzymology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phenotype , Proteomics/methods , Signal Transduction/drug effects , Telomerase/genetics , Time Factors , Transduction, Genetic
19.
PLoS One ; 11(3): e0149832, 2016.
Article in English | MEDLINE | ID: mdl-26943907

ABSTRACT

C-150 a Mannich-type curcumin derivative, exhibited pronounced cytotoxic effects against eight glioma cell lines at micromolar concentrations. Inhibition of cell proliferation by C-150 was mediated by affecting multiple targets as confirmed at transcription and protein level. C-150 effectively reduced the transcription activation of NFkB, inhibited PKC-alpha which are constitutively over-expressed in glioblastoma. The effects of C-150 on the Akt/ Notch signaling were also demonstrated in a Drosophila tumorigenesis model. C-150 reduced the number of tumors in Drosophila with similar efficacy to mitoxantrone. In an in vivo orthotopic glioma model, C-150 significantly increased the median survival of treated nude rats compared to control animals. The multi-target action of C-150, and its preliminary in vivo efficacy would render this curcumin analogue as a potent clinical candidate against glioblastoma.


Subject(s)
Acrylamides/chemistry , Brain Neoplasms/drug therapy , Curcumin/analogs & derivatives , Curcumin/chemistry , Glioblastoma/drug therapy , NF-kappa B/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Receptors, Notch/antagonists & inhibitors , Unfolded Protein Response/drug effects , Animals , Antineoplastic Agents/chemistry , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Drosophila melanogaster , Drug Screening Assays, Antitumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Humans , Inhibitory Concentration 50 , Melanoma, Experimental , Mice , Neoplasm Transplantation , Rats , Rats, Nude , Receptors, Notch/metabolism , Signal Transduction , Transcription, Genetic
20.
Oncotarget ; 6(31): 30453-71, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26421711

ABSTRACT

Here, we developed an isogenic cell model of "stemness" to facilitate protein biomarker discovery in breast cancer. For this purpose, we used knowledge gained previously from the study of the mouse mammary tumor virus (MMTV). MMTV initiates mammary tumorigenesis in mice by promoter insertion adjacent to two main integration sites, namely Int-1 (Wnt1) and Int-2 (Fgf3), which ultimately activates Wnt/ß-catenin signaling, driving the propagation of mammary cancer stem cells (CSCs). Thus, to develop a humanized model of MMTV signaling, we over-expressed WNT1 and FGF3 in MCF7 cells, an ER(+) human breast cancer cell line. We then validated that MCF7 cells over-expressing both WNT1 and FGF3 show a 3.5-fold increase in mammosphere formation, and that conditioned media from these cells is also sufficient to promote stem cell activity in untransfected parental MCF7 and T47D cells, as WNT1 and FGF3 are secreted factors. Proteomic analysis of this model system revealed the induction of i) EMT markers, ii) mitochondrial proteins, iii) glycolytic enzymes and iv) protein synthesis machinery, consistent with an anabolic CSC phenotype. MitoTracker staining validated the expected WNT1/FGF3-induced increase in mitochondrial mass and activity, which presumably reflects increased mitochondrial biogenesis. Importantly, many of the proteins that were up-regulated by WNT/FGF-signaling in MCF7 cells, were also transcriptionally over-expressed in human breast cancer cells in vivo, based on the bioinformatic analysis of public gene expression datasets of laser-captured patient samples. As such, this isogenic cell model should accelerate the discovery of new biomarkers to predict clinical outcome in breast cancer, facilitating the development of personalized medicine.Finally, we used mitochondrial mass as a surrogate marker for increased mitochondrial biogenesis in untransfected MCF7 cells. As predicted, metabolic fractionation of parental MCF7 cells, via MitoTracker staining, indicated that high mitochondrial mass is a new metabolic biomarker for the enrichment of anabolic CSCs, as functionally assessed by mammosphere-forming activity. This observation has broad implications for understanding the role of mitochondrial biogenesis in the propagation of stem-like cancer cells. Technically, this general metabolic approach could be applied to any cancer type, to identify and target the mitochondrial-rich CSC population.The implications of our work for understanding the role of mitochondrial metabolism in viral oncogenesis driven by random promoter insertions are also discussed, in the context of MMTV and ALV infections.


Subject(s)
Biomarkers, Tumor/physiology , Breast Neoplasms/pathology , Fibroblast Growth Factor 3/biosynthesis , Mitochondria/physiology , Wnt1 Protein/biosynthesis , Culture Media, Conditioned/pharmacology , Female , Fibroblast Growth Factor 3/metabolism , Humans , MCF-7 Cells , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/pathogenicity , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Models, Biological , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Spheroids, Cellular/cytology , Tumor Cells, Cultured , Wnt Signaling Pathway/physiology , Wnt1 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...