Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 204: 267-76, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24992558

ABSTRACT

The European eel is a critically endangered species that cannot be reproduced in captivity yet. Artificial maturation of female European eels can be achieved via a laborious and expensive procedure, including weekly injections with pituitary extracts for up to 6 months. The success rate is highly variable and a minimally invasive method for early selection of responsive eels would prevent the unnecessary and lengthy treatment of non-responding individuals. Since sexual maturation of European eels is accompanied by morphological changes of the pectoral fin, we examined whether fin could be used to monitor the response to the hormone treatment. Farmed eels were subjected to weekly injections with pituitary extracts and representative groups were sampled at 0 and 14-18 weeks of hormone treatment. Responders and non-responders were identified based on the gonado-somatic index. Transcriptomes of pectoral fin samples obtained at the start and end of the trial were mapped using Illumina RNAseq. Responders showed 384 and non-responders only 54 differentially expressed genes. Highly stringent selection based on minimum expression levels and fold-changes and a manual re-annotation round yielded 23 up-regulated and 21 down-regulated maturation marker genes. The up-regulated markers belong to five categories: proteases, skin/mucus structural proteins, steroid hormone signaling, tyrosine/dopamine metabolism and lipid metabolism. The down-regulated markers are either blood markers or lectin-related genes. In conclusion, pectoral fin transcriptomes are a rich source of indicator markers for monitoring hormone induced sexual maturation of female European eels. In addition, these markers provide important new insight into several fundamental processes in eel biology.


Subject(s)
Anguilla/metabolism , Biomarkers/analysis , Gene Expression Profiling , Gene Expression Regulation/drug effects , Hormones/pharmacology , Pituitary Gland/metabolism , Sexual Maturation/physiology , Anguilla/genetics , Anguilla/growth & development , Animals , Blotting, Western , Female , High-Throughput Nucleotide Sequencing , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Sexual Maturation/drug effects
2.
Tissue Barriers ; 1(3): e26518, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24665404

ABSTRACT

Claudin-20 is a member of the Claudin family of transmembrane proteins located in the tight junction (TJ) of cells of epithelial origin. Due to the increasing evidence supporting the role of TJ proteins in preventing tumor cell metastatic behavior, this study sought to evaluate the distribution of Claudin-20 in human breast cancer and the effect of Claudin-20 overexpression in human breast cancer cells. Q-PCR data from breast cancer primary tumors (n = 114) and matched background tissue (n = 30) showed that high claudin-20 expression was correlated with poor survival of patients with breast cancer (p = 0.022). Following transformation of the breast cancer cell lines MDA-MB-231 and MCF7 with a Claudin-20 expression construct functional assays were performed to ascertain changes in cell behavior. Claudin-20 transformed cells showed significantly increased invasion (p < 0.005) and were significantly less adhesive than wild type cells (p < 0.05). There was no effect on growth (either in vitro or in vivo) for either cell line. Overexpression of Claudin-20 resulted in reduced transepithelial resistance (induced by the motogen HGF at 25 ng/ml, p = 0.0007). Interestingly, this was not mirrored by paracellular permeability, as overexpression of Claudin-20 caused a decrease in permeability. The introduction of Claudin-20 into human breast cancer cells resulted in breast cancer cells with an aggressive phenotype and reduced trans-epithelial resistance. There was no corresponding decrease in paracellular permeability, indicating that this Claudin has a differential function in epithelial TJ. This provides further insight into the importance of correctly functioning TJ in preventing the progression of human breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...