Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Microbiol Methods ; 222: 106955, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754481

ABSTRACT

We aim to objectify the evaluation criteria of agglutination rate estimation in the Microscopic Agglutination Test (MAT). This study proposes a deep learning method that extracts free leptospires from dark-field microscopic images and calculates the agglutination rate. The experiments show the effect of objectification with real pictures.


Subject(s)
Agglutination Tests , Deep Learning , Microscopy , Agglutination Tests/methods , Microscopy/methods , Humans
2.
Heliyon ; 10(1): e23595, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187240

ABSTRACT

Objectives: This study aims to examine whether the parenterally administered mRNA-based COVID-19 vaccines can induce sufficient mucosal-type IgA responses to prevent SARS-CoV-2 transmission. Methods: We examined the longitudinal kinetics of SARS-CoV-2 spike RBD-specific IgA and IgG responses in sera of Japanese healthcare workers (HCWs) after receiving two doses and the third dose of BNT162b2 mRNA vaccines. During the prospective cohort study, Omicron breakthrough infections occurred in 62 participants among 370 HCWs who had received triple doses of the vaccine. Pre-breakthrough sera of infected HCWs and non-infected HCWs were examined for the levels of anti-RBD IgA and IgG titers. Results: The seropositivity of anti-RBD IgA at 1 M after the second vaccine (2D-1M) and after the third dose (3D-1M) was 65.4% and 87.4%, respectively, and wanes quickly. The boosting effect on anti-RBD Ab titers following breakthrough infections was more notable for anti-RBD IgA than for IgG. There were partial cause-relationships between the lower anti-RBD IgA or IgG at pre-breakthrough sera and the breakthrough infection. Conclusions: Parenterally administered COVID-19 vaccines do not generate sufficient mucosal-type IgA responses despite strong systemic IgG responses to SARS-CoV-2. These results demonstrate the necessity and importance of reevaluating vaccine design and scheduling to efficiently increase oral or respiratory mucosal immunity against SARS-CoV-2.

3.
Int J Infect Dis ; 139: 1-5, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38029832

ABSTRACT

OBJECTIVES: It is crucial to analyze the consequences of repeated messenger RNA (mRNA)-based COVID-19 vaccinations on SARS-CoV-2 spike receptor binding domain (RBD)-specific immunoglobulin (Ig)G subclass and the possible causal relationship with breakthrough infection. METHODS: We examined the longitudinal kinetics of RBD-specific IgG subclass antibodies in sera after receiving the second, third, and fourth doses of mRNA-based COVID-19 vaccines in Japanese healthcare workers. Anti-RBD IgG subclass in sera of patients with COVID-19-infected who had not received the COVID-19 vaccine were also examined. We compared anti-RBD IgG subclass antibody titers in the serum of pre-breakthrough-infected vaccinees and non-infected vaccinees. RESULTS: The seropositivity of anti-RBD IgG4 after the vaccination was 6.76% at 1 month after the second dose, gradually increased to 50.5% at 6 months after the second dose, and reached 97.2% at 1 month after the third dose. The seropositivity and titers of anti-RBD IgG1/IgG3 quickly reached the maximum at 1 month after the second dose and declined afterward. The elevated anti-RBD IgG4 Ab levels observed after repeated vaccinations were unlikely to increase the risk of breakthrough infection. CONCLUSIONS: Repeated vaccinations induce delayed but drastic increases in anti-RBD IgG4 responses. Further functional investigations are needed to reveal the magnitude of the high contribution of spike-specific IgG4 subclasses after repeated mRNA-based COVID-19 vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Breakthrough Infections , SARS-CoV-2 , Immunization , Vaccination , Immunoglobulin G , RNA, Messenger/genetics , Antibodies, Viral
4.
J Immunol ; 210(8): 1086-1097, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36883861

ABSTRACT

Fatty acid-binding protein 4 (FABP4) is a critical immune-metabolic modulator, mainly expressed in adipocytes and macrophages, secreted from adipocytes in association with lipolysis, and plays essential pathogenic roles in cardiovascular and metabolic diseases. We previously reported Chlamydia pneumoniae infecting murine 3T3-L1 adipocytes and causing lipolysis and FABP4 secretion in vitro. However, it is still unknown whether C. pneumoniae intranasal lung infection targets white adipose tissues (WATs), induces lipolysis, and causes FABP4 secretion in vivo. In this study, we demonstrate that C. pneumoniae lung infection causes robust lipolysis in WAT. Infection-induced WAT lipolysis was diminished in FABP4-/- mice or FABP4 inhibitor-pretreated wild-type mice. Infection by C. pneumoniae in wild-type but not FABP4-/- mice induces the accumulation of TNF-α- and IL-6-producing M1-like adipose tissue macrophages in WAT. Infection-induced WAT pathology is augmented by endoplasmic reticulum (ER) stress/the unfolded protein response (UPR), which is abrogated by treatment with azoramide, a modulator of the UPR. C. pneumoniae lung infection is suggested to target WAT and induce lipolysis and FABP4 secretion in vivo via ER stress/UPR. FABP4 released from infected adipocytes may be taken up by other neighboring intact adipocytes or adipose tissue macrophages. This process can further induce ER stress activation and trigger lipolysis and inflammation, followed by FABP4 secretion, leading to WAT pathology. A better understanding of the role of FABP4 in C. pneumoniae infection-induced WAT pathology will provide the basis for rational intervention measures directed at C. pneumoniae infection and metabolic syndrome, such as atherosclerosis, for which robust epidemiologic evidence exists.


Subject(s)
Adipose Tissue, White , Chlamydophila Infections , Fatty Acid-Binding Proteins , Pneumonia, Bacterial , Animals , Mice , Adipose Tissue, White/pathology , Chlamydophila pneumoniae , Fatty Acid-Binding Proteins/metabolism , Lung/microbiology , Lung/pathology , Chlamydophila Infections/pathology , Pneumonia, Bacterial/pathology
5.
Yonago Acta Med ; 65(3): 207-214, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36061577

ABSTRACT

Background: In 2020, an incident involving spoiled salad dressing from a commercial source occurred. Upon opening the bottle, the contents exploded from gas that seemed to have fermented inside the bottle. For safety concerns, we sought to investigate the bacteria from the salad dressing in order to notify the company that made the product and relevant authorities. Methods: Anaerobic and carbon dioxide culture methods were used. To determine species of colonies, MALDI-TOF-MS and 16S rRNA whole sequencing were performed. Results: There were no colonies grown in anaerobic condition; however, we obtained three colonies from the carbon dioxide atmosphere. We determined the first colony as Alkalihalobacillus clausii (Bacillus clausii), the second as Bacillus spp. such as B. australimaris, B. safensis or B. safensis subsp. osmophilus and the third as B. paralicheniformis. Phylogenic tree analysis using the16S rRNA sequence revealed these colonies to be in a proximity of known gas-producing species. The NCBI database search revealed that a key gas production pathway gene, pyruvate formate-lyase (pfl), of which the gene product catalyzes pyruvate to formate conversion, exists in B. paralicheniformis. Formate dehydrogenase (FdhH) produces CO2 from formate that the coding gene fdhF positive bacteria can participate in gas production when formate is present in the culture. And we found fdhF from A. clausii, B. australimaris/B. safensis and B. paralicheniformis. Furthermore, under butanediol producing pathway, genes coding two enzymes involved in CO2 production, namely als and ald, existed in B. australimaris/B. safensis and B paralicheniformis, whereas A. clausii possessed als. Conclusion: Candidate species A. clausii, B. australimaris/B. safensis and B. paralicheniformis from spoiled salad dressing were thought to produce CO2 gas each from their own enzymes, or in combination, which caused the explosion upon opening. The endospore forming nature of Bacillus should alert us to be cautious when considering food producing process regulations where we need to thoroughly heat any product during manufacture in order to inactivate any bacteria as there is the possibility of this type of dangerous occurrence.

6.
Vaccines (Basel) ; 10(6)2022 May 24.
Article in English | MEDLINE | ID: mdl-35746438

ABSTRACT

Analysis of longitudinal dynamics of humoral immune responses to the BNT162b2 COVID-19 vaccine might provide useful information to predict the effectiveness of BNT162b2 in preventing SARS-CoV-2 infection. Herein, we measure anti-RBD IgG at 1, 3 and 6 months (M) after the second dose of BNT162b2, and at 1 M after a third dose of BNT162b2 vaccination in 431 COVID-19-naïve healthcare workers (HCWs) in Japan. All HCWs mounted high-anti-RBD IgG responses after the two-dose regimen of BNT162b2 vaccinations. Older persons and males presented lower anti-RBD IgG responses than younger adults and females, respectively. The decay in anti-RBD IgG started from 1 M after the second dose of BNT162b2 and anti-RBD IgG titers dropped to nearly one-tenth at 6 M after the second vaccination. Subsequently, the participants received a third dose of BNT162b2 at 8 M after the second dose of BNT162b2 vaccine. Anti-RBD antibody titers 1 M after the third dose of BNT162b2 increased seventeen times that of 6 M after the second dose, and was twice higher than the peak antibody titers at 1 M after the second dose of vaccination. The negative effect of age for the male gender on anti-RBD IgG antibody titers was not observed at 1 M after the third dose of BNT162b2 vaccine. There were no notable adverse events reported, which required hospitalization in these participants. These results suggest that the third dose of BNT162b2 safely improves humoral immunity against SARS-CoV-2 with no major adverse events.

7.
Sci Rep ; 12(1): 6825, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474318

ABSTRACT

Nucleotide second messengers are universally crucial factors for the signal transduction of various organisms. In prokaryotes, cyclic nucleotide messengers are involved in the bacterial life cycle and in functions such as virulence and biofilm formation, mainly via gene regulation. Here, we show that the swimming motility of the soil bacterium Leptospira kobayashii is rapidly modulated by light stimulation. Analysis of a loss-of-photoresponsivity mutant obtained by transposon random mutagenesis identified the novel sensory gene, and its expression in Escherichia coli through codon optimization elucidated the light-dependent synthesis of cyclic adenosine monophosphate (cAMP). GFP labeling showed the localization of the photoresponsive enzyme at the cell poles where flagellar motors reside. These findings suggest a new role for cAMP in rapidly controlling the flagella-dependent motility of Leptospira and highlight the global distribution of the newly discovered photoactivated cyclase among diverse microbial species.


Subject(s)
Spirochaeta , Spirochaetales , Bacteria/genetics , Cyclic AMP/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Second Messenger Systems , Spirochaeta/metabolism , Spirochaetales/metabolism
8.
Toxins (Basel) ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: mdl-35202097

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) causes proximal tubular defects in the kidney. However, factors altered by Shiga toxin (Stx) within the proximal tubules are yet to be shown. We determined Stx receptor Gb3 in murine and human kidneys and confirmed the receptor expression in the proximal tubules. Stx2-injected mouse kidney tissues and Stx2-treated human primary renal proximal tubular epithelial cell (RPTEC) were collected and microarray analysis was performed. We compared murine kidney and RPTEC arrays and selected common 58 genes that are differentially expressed vs. control (0 h, no toxin-treated). We found that the most highly expressed gene was GDF15, which may be involved in Stx2-induced weight loss. Genes associated with previously reported Stx2 activities such as src kinase Yes phosphorylation pathway activation, unfolded protein response (UPR) and ribotoxic stress response (RSR) showed differential expressions. Moreover, circadian clock genes were differentially expressed, suggesting Stx2-induced renal circadian rhythm disturbance. Circadian rhythm-regulated proximal tubular Na+-glucose transporter SGLT1 (SLC5A1) was down-regulated, indicating proximal tubular functional deterioration, and mice developed glucosuria confirming proximal tubular dysfunction. Stx2 alters gene expression in murine and human proximal tubules through known activities and newly investigated circadian rhythm disturbance, which may result in proximal tubular dysfunctions.


Subject(s)
Circadian Rhythm Signaling Peptides and Proteins/metabolism , Circadian Rhythm , Gene Expression Regulation/drug effects , Kidney Tubules, Proximal/drug effects , Shiga Toxin 2/toxicity , Animals , Circadian Rhythm Signaling Peptides and Proteins/genetics , Epithelial Cells/drug effects , Glycosuria/chemically induced , Humans , Kidney Tubules, Proximal/cytology , Lipopolysaccharides/toxicity , Mice , Protein Array Analysis
9.
PLoS One ; 16(11): e0259907, 2021.
Article in English | MEDLINE | ID: mdl-34784387

ABSTRACT

Leptospirosis is a zoonosis caused by the pathogenic bacterium Leptospira. The Microscopic Agglutination Test (MAT) is widely used as the gold standard for diagnosis of leptospirosis. In this method, diluted patient serum is mixed with serotype-determined Leptospires, and the presence or absence of aggregation is determined under a dark-field microscope to calculate the antibody titer. Problems of the current MAT method are 1) a requirement of examining many specimens per sample, and 2) a need of distinguishing contaminants from true aggregates to accurately identify positivity. Therefore, increasing efficiency and accuracy are the key to refine MAT. It is possible to achieve efficiency and standardize accuracy at the same time by automating the decision-making process. In this study, we built an automatic identification algorithm of MAT using a machine learning method to determine agglutination within microscopic images. The machine learned the features from 316 positive and 230 negative MAT images created with sera of Leptospira-infected (positive) and non-infected (negative) hamsters, respectively. In addition to the acquired original images, wavelet-transformed images were also considered as features. We utilized a support vector machine (SVM) as a proposed decision method. We validated the trained SVMs with 210 positive and 154 negative images. When the features were obtained from original or wavelet-transformed images, all negative images were misjudged as positive, and the classification performance was very low with sensitivity of 1 and specificity of 0. In contrast, when the histograms of wavelet coefficients were used as features, the performance was greatly improved with sensitivity of 0.99 and specificity of 0.99. We confirmed that the current algorithm judges the positive or negative of agglutinations in MAT images and gives the further possibility of automatizing MAT procedure.


Subject(s)
Agglutination Tests/methods , Image Interpretation, Computer-Assisted/methods , Leptospirosis/diagnostic imaging , Algorithms , Animals , Cricetinae , Decision Support Systems, Clinical , Leptospirosis/immunology , Male , Microscopy , Sensitivity and Specificity , Support Vector Machine , Wavelet Analysis
10.
Mol Ther ; 28(1): 100-118, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31607541

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) causes hemorrhagic colitis, hemolytic uremic syndrome, and acute encephalopathies that may lead to sudden death or severe neurologic sequelae. Current treatments, including immunoglobulin G (IgG) immunoadsorption, plasma exchange, steroid pulse therapy, and the monoclonal antibody eculizumab, have limited effects against the severe neurologic sequelae. Multilineage-differentiating stress-enduring (Muse) cells are endogenous reparative non-tumorigenic stem cells that naturally reside in the body and are currently under clinical trials for regenerative medicine. When administered intravenously, Musecells accumulate to the damaged tissue, where they exert anti-inflammatory, anti-apoptotic, anti-fibrotic, and immunomodulatory effects, and replace damaged cells by differentiating into tissue-constituent cells. Here, severely immunocompromised non-obese diabetic/severe combined immunodeficiency (NOD-SCID) mice orally inoculated with 9 × 109 colony-forming units of STEC O111 and treated 48 h later with intravenous injection of 5 × 104 Muse cells exhibited 100% survival and no severe after-effects of infection. Suppression of granulocyte-colony-stimulating factor (G-CSF) by RNAi abolished the beneficial effects of Muse cells, leading to a 40% death and significant body weight loss, suggesting the involvement of G-CSF in the beneficial effects of Muse cells in STEC-infected mice. Thus, intravenous administration of Muse cells could be a candidate therapeutic approach for preventing fatal encephalopathy after STEC infection.


Subject(s)
Brain Diseases/microbiology , Brain Diseases/therapy , Cell Transplantation/methods , Escherichia coli Infections/therapy , Mesenchymal Stem Cell Transplantation/methods , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/metabolism , Adult , Aged, 80 and over , Animals , Brain/pathology , Brain Diseases/epidemiology , Brain Diseases/metabolism , Disease Models, Animal , Disease Outbreaks , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Female , Humans , Injections, Intravenous , Japan/epidemiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Inbred NOD , Mice, SCID , Treatment Outcome
11.
Int Immunopharmacol ; 75: 105831, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31437790

ABSTRACT

Plasma osteopontin (OPN) levels are elevated in tuberculosis patients and may involve granuloma formation. New inhibitors using brefelamide, an aromatic amide isolated from Dictyostelium cellular slime molds that may inhibit OPN transcription in A549 cells at 1 µM concentration, were synthesized as compounds C, D, and E. Their inhibitory activity against OPN synthesis in phorbol 12-myristate 13-acetate (PMA)-stimulated THP-1 cells was confirmed using enzyme-linked immunosorbent assay (ELISA), a multicolor immune-fluorescent microscope, and western blot. In the ELISA performed using full-length OPN, each compound showed significant inhibition in culture supernatants with half maximal inhibitory concentration (IC50) values of 1.6, 1.8, and 2.2 µM for C, D, and E, respectively. In another ELISA to detect the immune-related form of OPN, IC50 values were 0.6, 1.2, and 2.5 µM for compounds C, D, and E, respectively. The decreases in OPN expression and synthesis were confirmed using immunofluorescence and western blot studies using compound-treated cells or cell lysates. Luminex assay of the supernatants of PMA-treated THP-1 cells showed significant reduction in the synthesis of interleukin (IL)-1ß, galectin-9, and tumor necrosis factor (TNF)-α. Elucidation of the detailed mechanisms of the biological activities of these compounds would be necessary; however, they may be used in clinical trials for infectious diseases, inflammatory disorders, and cancer.


Subject(s)
Amides/pharmacology , Anti-Inflammatory Agents/pharmacology , Cytokines/immunology , Galectins/immunology , Phenols/pharmacology , A549 Cells , Humans , THP-1 Cells , Tetradecanoylphorbol Acetate
12.
Int J Mol Sci ; 19(2)2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29385060

ABSTRACT

The protease-cleaved osteopontin (OPN) was proposed to enhance the migration of memory T cells to granulomas in tuberculosis. Various forms of OPN were identified in human monocytic THP-1 cells stimulated by phorbol 12-myristate 13-acetate (PMA). Antibodies O-17, 10A16 and 34E3, which recognize N-terminus, the C-half, and thrombin-cleaved site of OPN, respectively, all detected distinct bands on Western blots following PMA stimulation. Bands corresponding to 18 and 30 kD were detected by antibodies 34E3 and 10A16, indicating that OPN cleavage occurred by endogenous proteases in the PMA-stimulated THP-1 cells. In immune-fluorescence (IF) assay, 34E3 positive signals were detected in intracellular space of non-infected and bacillus Calmette-Guérin (BCG)-infected cells; however, 10A16 positive signals were confirmed in extracellular area in PMA-stimulated cells followed by BCG infection. Small amounts of full-length (FL) and thrombin-cleaved (Tr) OPN were detected by ELISA in the supernatants of non-PMA-stimulated cells, and increased levels of all forms, including undefined (Ud) OPN, in PMA-stimulated cells. ELISA showed a decrease in OPN synthesis during BCG infection. To our knowledge, this is the first report of OPN cleavage in THP-1 macrophages after PMA stimulation, and of enhanced cleavage induced by BCG infection.


Subject(s)
Macrophages/metabolism , Mycobacterium bovis/physiology , Osteopontin/metabolism , Protein Processing, Post-Translational , Humans , Macrophages/drug effects , THP-1 Cells , Tetradecanoylphorbol Acetate/pharmacology , Thrombin/metabolism
13.
PLoS One ; 12(2): e0172973, 2017.
Article in English | MEDLINE | ID: mdl-28245231

ABSTRACT

Leptospirosis is one of the most widespread zoonoses in the world, and its most severe form in humans, "Weil's disease," may lead to jaundice, hemorrhage, renal failure, pulmonary hemorrhage syndrome, and sometimes,fatal multiple organ failure. Although the mechanisms underlying jaundice in leptospirosis have been gradually unraveled, the pathophysiology and distribution of leptospires during the early stage of infection are not well understood. Therefore, we investigated the hamster leptospirosis model, which is the accepted animal model of human Weil's disease, by using an in vivo imaging system to observe the whole bodies of animals infected with Leptospira interrogans and to identify the colonization and growth sites of the leptospires during the early phase of infection. Hamsters, infected subcutaneously with 104 bioluminescent leptospires, were analyzed by in vivo imaging, organ culture, and microscopy. The results showed that the luminescence from the leptospires spread through each hamster's body sequentially. The luminescence was first detected at the injection site only, and finally spread to the central abdomen, in the liver area. Additionally, the luminescence observed in the adipose tissue was the earliest detectable compared with the other organs, indicating that the leptospires colonized the adipose tissue at the early stage of leptospirosis. Adipose tissue cultures of the leptospires became positive earlier than the blood cultures. Microscopic analysis revealed that the leptospires colonized the inner walls of the blood vessels in the adipose tissue. In conclusion, this is the first study to report that adipose tissue is an important colonization site for leptospires, as demonstrated by microscopy and culture analyses of adipose tissue in the hamster model of Weil's disease.


Subject(s)
Adipose Tissue/parasitology , Leptospira interrogans/pathogenicity , Leptospirosis/pathology , Leptospirosis/parasitology , Animals , Cricetinae , Disease Models, Animal , Female , Luminescent Measurements , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Weil Disease/parasitology
14.
Microbiol Immunol ; 59(6): 322-30, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25890990

ABSTRACT

Leptospirosis is a worldwide zoonosis. The importance of urban leptospirosis is recognized in Japan: urban rats carry pathogenic leptospires and people acquire these pathogens through contact with surface water or soil contaminated by the urine of the infected animals. To determine the current Leptospira carriage rate in urban rats, 29 wild rats were trapped in the central area of Fukuoka and strains isolated from their kidneys and urine analyzed. When semi-solid Korthof's medium containing 0.1% agar was used for isolation, 72.2% and 30.8% of the kidney and urine cultures, respectively, were found to be Leptospira-positive. The isolates belonged to Leptospira interrogans, and were classified into two groups (serogroups Pomona and Icterohaemorrhagiae) based on the results of gyrB sequence analysis and microscopic agglutination testing (MAT). Strains belonging to serogroup Icterohemorrhagiae grew well in liquid medium. On the other hand, serogroup Pomona isolates multiplied very little in liquid medium, but did grow in a semi-solid medium. Although strains belonging to serogroup Pomona have not been recognized as native to Japan, this strain may be widely distributed in urban rats. Representative strains from each group were found to be highly pathogenic to hamsters. Our findings should serve as a warning that it is still possible to become infected with leptospires from wild rats living in inner cities of Japan. Furthermore, the use of semi-solid medium for culture will improve the isolation rate of leptospires from the kidneys of wild rats.


Subject(s)
Bacteriological Techniques/methods , Culture Media/chemistry , Leptospira interrogans/isolation & purification , Leptospirosis/veterinary , Rodent Diseases/diagnosis , Rodent Diseases/microbiology , Agglutination Tests , Animals , Cities , DNA Gyrase/genetics , Disease Models, Animal , Japan , Kidney/microbiology , Leptospira interrogans/pathogenicity , Leptospirosis/diagnosis , Leptospirosis/microbiology , Mesocricetus , Rats , Urine , Virulence
15.
Appl Environ Microbiol ; 79(2): 601-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23144130

ABSTRACT

There have been few reports on the epidemiological analysis of environmental Leptospira isolates. This is probably because the isolation of leptospires from the environment was usually unsuccessful due to the overgrowth of contaminants and the slow growth of Leptospira. In this study, we collected a total of 88 samples of soil and water from three sites: Metro Manila and Nueva Ecija, Philippines (an area where Leptospira is now endemic), and Fukuoka, Japan (an area where Leptospira was once endemic). We succeeded in isolating Leptospira from 37 samples by using the novel combination of five antimicrobial agents reported in 2011. The frequencies of positive isolation of Leptospira in the Philippines and Japan were 40 and 46%, respectively. For Leptospira-positive samples, five colonies from each sample were isolated and analyzed by pulsed-field gel electrophoresis (PFGE). The isolates from each area showed their respective characteristics in phylogenetic trees based on the PFGE patterns. Some isolates were closely related to each other across borders. Based on 16S rRNA gene-based phylogenetic analysis, four isolates in Fukuoka were identified as a pathogenic species, L. alstonii; however, its virulence had been lost. One isolate from Nueva Ecija was identified as the intermediate pathogenic species Leptospira licerasiae. Most of the isolates from the environment belonged to nonpathogenic Leptospira species. We also investigated the strain variation among the isolates in a puddle over 5 months. We demonstrated, using PFGE analysis, that Leptospira survived in the wet soil on dry days and appeared in the surface water on rainy days. These results showed that the soil could be a reservoir of leptospires in the environment.


Subject(s)
Leptospira/isolation & purification , Soil Microbiology , Water Microbiology , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Electrophoresis, Gel, Pulsed-Field , Genotype , Japan , Leptospira/classification , Leptospira/genetics , Molecular Sequence Data , Philippines , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...