Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Chemistry ; 27(35): 8890, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34114263

ABSTRACT

Invited for the cover of this issue is the Ferdi Karadas and Ekmel Ozbay groups at Bilkent University and co-workers. The image presents an utopic city in Iron Age, which is powered by an iron photosensitizer that bridges semiconductor buildings (TiO2 nanowires) and the catalyst (cobalt site). Read the full text of the article at 10.1002/chem.202100654.


Subject(s)
Iron , Water , Catalysis , Ferrocyanides , Humans
3.
Chemistry ; 27(35): 8966-8976, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33929068

ABSTRACT

The replacement of traditional ruthenium-based photosensitizers with low-cost and abundant iron analogs is a key step for the advancement of scalable and sustainable dye-sensitized water splitting cells. In this proof-of-concept study, a pyridinium ligand coordinated pentacyanoferrate(II) chromophore is used to construct a cyanide-based CoFe extended bulk framework, in which the iron photosensitizer units are connected to cobalt water oxidation catalytic sites through cyanide linkers. The iron-sensitized photoanode exhibits exceptional stability for at least 5 h at pH 7 and features its photosensitizing ability with an incident photon-to-current conversion capacity up to 500 nm with nanosecond scale excited state lifetime. Ultrafast transient absorption and computational studies reveal that iron and cobalt sites mutually support each other for charge separation via short bridging cyanide groups and for injection to the semiconductor in our proof-of-concept photoelectrochemical device. The reorganization of the excited states due to the mixing of electronic states of metal-based orbitals subsequently tailor the electron transfer cascade during the photoelectrochemical process. This breakthrough in chromophore-catalyst assemblies will spark interest in dye-sensitization with robust bulk systems for photoconversion applications.


Subject(s)
Iron , Water , Ferrocyanides , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...