Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 82019 01 29.
Article in English | MEDLINE | ID: mdl-30693867

ABSTRACT

The use of misidentified and contaminated cell lines continues to be a problem in biomedical research. Research Resource Identifiers (RRIDs) should reduce the prevalence of misidentified and contaminated cell lines in the literature by alerting researchers to cell lines that are on the list of problematic cell lines, which is maintained by the International Cell Line Authentication Committee (ICLAC) and the Cellosaurus database. To test this assertion, we text-mined the methods sections of about two million papers in PubMed Central, identifying 305,161 unique cell-line names in 150,459 articles. We estimate that 8.6% of these cell lines were on the list of problematic cell lines, whereas only 3.3% of the cell lines in the 634 papers that included RRIDs were on the problematic list. This suggests that the use of RRIDs is associated with a lower reported use of problematic cell lines.


Subject(s)
Bibliometrics , Biomedical Research/standards , Cell Line Authentication/statistics & numerical data , Data Mining/methods , Cell Line , Humans , Periodicals as Topic , PubMed
2.
Sci Data ; 4: 170059, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28585923

ABSTRACT

Today's science increasingly requires effective ways to find and access existing datasets that are distributed across a range of repositories. For researchers in the life sciences, discoverability of datasets may soon become as essential as identifying the latest publications via PubMed. Through an international collaborative effort funded by the National Institutes of Health (NIH)'s Big Data to Knowledge (BD2K) initiative, we have designed and implemented the DAta Tag Suite (DATS) model to support the DataMed data discovery index. DataMed's goal is to be for data what PubMed has been for the scientific literature. Akin to the Journal Article Tag Suite (JATS) used in PubMed, the DATS model enables submission of metadata on datasets to DataMed. DATS has a core set of elements, which are generic and applicable to any type of dataset, and an extended set that can accommodate more specialized data types. DATS is a platform-independent model also available as an annotated serialization in schema.org, which in turn is widely used by major search engines like Google, Microsoft, Yahoo and Yandex.

3.
Neuroimage ; 124(Pt B): 1202-1207, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26032887

ABSTRACT

Arterial spin labeling (ASL) MRI provides an accurate and reliable measure of cerebral blood flow (CBF). A rapidly growing number of CBF measures are being collected both in clinical and research settings around the world, resulting in a large volume of data across a wide spectrum of study populations and health conditions. Here, we describe a central CBF data repository with integrated processing workflows, referred to as the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN). The CBFBIRN provides an integrated framework for the analysis and comparison of CBF measures across studies and sites. In this work, we introduce the main capabilities of the CBFBIRN (data storage, processing, and sharing), describe what types of data are available, explain how users can contribute to the data repository and access existing data from it, and discuss our long-term plans for the CBFBIRN.


Subject(s)
Cerebrovascular Circulation , Databases, Factual , Information Dissemination , Medical Informatics , Humans , Magnetic Resonance Angiography , Neuroimaging , Spin Labels
4.
Front Neuroinform ; 7: 21, 2013.
Article in English | MEDLINE | ID: mdl-24151465

ABSTRACT

Arterial spin labeling (ASL) is a magnetic resonance imaging technique that provides a non-invasive and quantitative measure of cerebral blood flow (CBF). After more than a decade of active research, ASL is now emerging as a robust and reliable CBF measurement technique with increased availability and ease of use. There is a growing number of research and clinical sites using ASL for neuroscience research and clinical care. In this paper, we present an online CBF Database and Analysis Pipeline, collectively called the Cerebral Blood Flow Biomedical Informatics Research Network (CBFBIRN) that allows researchers to upload and share ASL and clinical data. In addition to serving the role as a central data repository, the CBFBIRN provides a streamlined data processing infrastructure for CBF quantification and group analysis, which has the potential to accelerate the discovery of new scientific and clinical knowledge. All capabilities and features built into the CBFBIRN are accessed online using a web browser through a secure login. In this work, we begin with a general description of the CBFBIRN system data model and its architecture, then devote the remainder of the paper to the CBFBIRN capabilities. The latter part of our work is divided into two processing modules: (1) Data Upload and CBF Quantification Module; (2) Group Analysis Module that supports three types of analysis commonly used in neuroscience research. To date, the CBFBIRN hosts CBF maps and associated clinical data from more than 1,300 individual subjects. The data have been contributed by more than 20 different research studies, investigating the effect of various conditions on CBF including Alzheimer's, schizophrenia, bipolar disorder, depression, traumatic brain injury, HIV, caffeine usage, and methamphetamine abuse. Several example results, generated by the CBFBIRN processing modules, are presented. We conclude with the lessons learned during implementation and deployment of the CBFBIRN and our experience in promoting data sharing.

5.
Neuroimage ; 54(3): 2163-75, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-20932915

ABSTRACT

Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power, to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site variation in imaging methods could off-set these potential advantages. We used variance components analysis to investigate sources of variation in the blood oxygen level-dependent (BOLD) signal across four 3-T magnets in voxelwise and region-of-interest (ROI) analyses. Eighteen participants traveled to four magnet sites to complete eight runs of a working memory task involving emotional or neutral distraction. Person variance was more than 10 times larger than site variance for five of six ROIs studied. Person-by-site interactions, however, contributed sizable unwanted variance to the total. Averaging over runs increased between-site reliability, with many voxels showing good to excellent between-site reliability when eight runs were averaged and regions of interest showing fair to good reliability. Between-site reliability depended on the specific functional contrast analyzed in addition to the number of runs averaged. Although median effect size was correlated with between-site reliability, dissociations were observed for many voxels. Brain regions where the pooled effect size was large but between-site reliability was poor were associated with reduced individual differences. Brain regions where the pooled effect size was small but between-site reliability was excellent were associated with a balance of participants who displayed consistently positive or consistently negative BOLD responses. Although between-site reliability of BOLD data can be good to excellent, acquiring highly reliable data requires robust activation paradigms, ongoing quality assurance, and careful experimental control.


Subject(s)
Cognition/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Oxygen/blood , Adult , Algorithms , Data Interpretation, Statistical , Emotions/physiology , Female , Humans , Male , Memory, Short-Term/physiology , Middle Aged , Quality Control , Reproducibility of Results , Young Adult
6.
Neuroinformatics ; 8(4): 231-49, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20567938

ABSTRACT

Managing vast datasets collected throughout multiple clinical imaging communities has become critical with the ever increasing and diverse nature of datasets. Development of data management infrastructure is further complicated by technical and experimental advances that drive modifications to existing protocols and acquisition of new types of research data to be incorporated into existing data management systems. In this paper, an extensible data management system for clinical neuroimaging studies is introduced: The Human Clinical Imaging Database (HID) and Toolkit. The database schema is constructed to support the storage of new data types without changes to the underlying schema. The complex infrastructure allows management of experiment data, such as image protocol and behavioral task parameters, as well as subject-specific data, including demographics, clinical assessments, and behavioral task performance metrics. Of significant interest, embedded clinical data entry and management tools enhance both consistency of data reporting and automatic entry of data into the database. The Clinical Assessment Layout Manager (CALM) allows users to create on-line data entry forms for use within and across sites, through which data is pulled into the underlying database via the generic clinical assessment management engine (GAME). Importantly, the system is designed to operate in a distributed environment, serving both human users and client applications in a service-oriented manner. Querying capabilities use a built-in multi-database parallel query builder/result combiner, allowing web-accessible queries within and across multiple federated databases. The system along with its documentation is open-source and available from the Neuroimaging Informatics Tools and Resource Clearinghouse (NITRC) site.


Subject(s)
Biomedical Research , Database Management Systems , Diagnostic Imaging , Information Dissemination , Internet , Medical Informatics , Biomedical Research/organization & administration , Brain Mapping , Database Management Systems/organization & administration , Humans , Models, Statistical
7.
Methods Mol Biol ; 569: 173-96, 2009.
Article in English | MEDLINE | ID: mdl-19623491

ABSTRACT

Ever-increasing size of the biomedical literature makes more precise information retrieval and tapping into implicit knowledge in scientific literature a necessity. In this chapter, first, three new variants of the expectation-maximization (EM) method for semisupervised document classification (Machine Learning 39:103-134, 2000) are introduced to refine biomedical literature meta-searches. The retrieval performance of a multi-mixture per class EM variant with Agglomerative Information Bottleneck clustering (Slonim and Tishby (1999) Agglomerative information bottleneck. In Proceedings of NIPS-12) using Davies-Bouldin cluster validity index (IEEE Transactions on Pattern Analysis and Machine Intelligence 1:224-227, 1979), rivaled the state-of-the-art transductive support vector machines (TSVM) (Joachims (1999) Transductive inference for text classification using support vector machines. In Proceedings of the International Conference on Machine Learning (ICML)). Moreover, the multi-mixture per class EM variant refined search results more quickly with more than one order of magnitude improvement in execution time compared with TSVM. A second tool, CRFNER, uses conditional random fields (Lafferty et al. (2001) Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-2001) to recognize 15 types of named entities from schizophrenia abstracts outperforming ABNER (Settles (2004) Biomedical named entity recognition using conditional random fields and rich feature sets. In Proceedings of COLING 2004 International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA)) in biological named entity recognition and reaching F(1) performance of 82.5% on the second set of named entities.


Subject(s)
Artificial Intelligence , Computational Biology , Neurodegenerative Diseases , Algorithms , Cluster Analysis , Databases, Factual , Humans , Information Storage and Retrieval , Knowledge Bases , Natural Language Processing
8.
Hum Brain Mapp ; 28(9): 892-903, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17295313

ABSTRACT

Due to the increasing need for subject privacy, the ability to deidentify structural MR images so that they do not provide full facial detail is desirable. A program was developed that uses models of nonbrain structures for removing potentially identifying facial features. When a novel image is presented, the optimal linear transform is computed for the input volume (Fischl et al. [2002]: Neuron 33:341-355; Fischl et al. [2004]: Neuroimage 23 (Suppl 1):S69-S84). A brain mask is constructed by forming the union of all voxels with nonzero probability of being brain and then morphologically dilated. All voxels outside the mask with a nonzero probability of being a facial feature are set to 0. The algorithm was applied to 342 datasets that included two different T1-weighted pulse sequences and four different diagnoses (depressed, Alzheimer's, and elderly and young control groups). Visual inspection showed none had brain tissue removed. In a detailed analysis of the impact of defacing on skull-stripping, 16 datasets were bias corrected with N3 (Sled et al. [1998]: IEEE Trans Med Imaging 17:87-97), defaced, and then skull-stripped using either a hybrid watershed algorithm (Ségonne et al. [2004]: Neuroimage 22:1060-1075, in FreeSurfer) or Brain Surface Extractor (Sandor and Leahy [1997]: IEEE Trans Med Imaging 16:41-54; Shattuck et al. [2001]: Neuroimage 13:856-876); defacing did not appreciably influence the outcome of skull-stripping. Results suggested that the automatic defacing algorithm is robust, efficiently removes nonbrain tissue, and does not unduly influence the outcome of the processing methods utilized; in some cases, skull-stripping was improved. Analyses support this algorithm as a viable method to allow data sharing with minimal data alteration within large-scale multisite projects.


Subject(s)
Brain/anatomy & histology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Aged , Aging/physiology , Algorithms , Alzheimer Disease/pathology , Data Interpretation, Statistical , Depression/pathology , Female , Humans , Male , Middle Aged , Skull/anatomy & histology
9.
Hum Brain Mapp ; 27(2): 99-113, 2006 Feb.
Article in English | MEDLINE | ID: mdl-15986433

ABSTRACT

Performance of automated methods to isolate brain from nonbrain tissues in magnetic resonance (MR) structural images may be influenced by MR signal inhomogeneities, type of MR image set, regional anatomy, and age and diagnosis of subjects studied. The present study compared the performance of four methods: Brain Extraction Tool (BET; Smith [2002]: Hum Brain Mapp 17:143-155); 3dIntracranial (Ward [1999] Milwaukee: Biophysics Research Institute, Medical College of Wisconsin; in AFNI); a Hybrid Watershed algorithm (HWA, Segonne et al. [2004] Neuroimage 22:1060-1075; in FreeSurfer); and Brain Surface Extractor (BSE, Sandor and Leahy [1997] IEEE Trans Med Imag 16:41-54; Shattuck et al. [2001] Neuroimage 13:856-876) to manually stripped images. The methods were applied to uncorrected and bias-corrected datasets; Legacy and Contemporary T1-weighted image sets; and four diagnostic groups (depressed, Alzheimer's, young and elderly control). To provide a criterion for outcome assessment, two experts manually stripped six sagittal sections for each dataset in locations where brain and nonbrain tissue are difficult to distinguish. Methods were compared on Jaccard similarity coefficients, Hausdorff distances, and an Expectation-Maximization algorithm. Methods tended to perform better on contemporary datasets; bias correction did not significantly improve method performance. Mesial sections were most difficult for all methods. Although AD image sets were most difficult to strip, HWA and BSE were more robust across diagnostic groups compared with 3dIntracranial and BET. With respect to specificity, BSE tended to perform best across all groups, whereas HWA was more sensitive than other methods. The results of this study may direct users towards a method appropriate to their T1-weighted datasets and improve the efficiency of processing for large, multisite neuroimaging studies.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Adult , Age Factors , Aged , Algorithms , Brain Diseases/diagnostic imaging , Humans , Middle Aged , Radiography , Sensitivity and Specificity , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...