Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2400913, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847569

ABSTRACT

Electrochemical carbon dioxide reduction reaction (ECO2RR) is a promising approach to synthesize fuels and value-added chemical feedstocks while reducing atmospheric CO2 levels. Here, high surface area cerium and sulfur-doped hierarchical bismuth oxide nanosheets (Ce@S-Bi2O3) are develpoed by a solvothermal method. The resulting Ce@S-Bi2O3 electrocatalyst shows a maximum formate Faradaic efficiency (FE) of 92.5% and a current density of 42.09 mA cm-2 at -1.16 V versus RHE using a traditional H-cell system. Furthermore, using a three-chamber gas diffusion electrode (GDE) reactor, a maximum formate FE of 85% is achieved in a wide range of applied potentials (-0.86 to -1.36 V vs RHE) using Ce@S-Bi2O3. The density functional theory (DFT) results show that doping of Ce and S in Bi2O3 enhances formate production by weakening the OH* and H* species. Moreover, DFT calculations reveal that *OCHO is a dominant pathway on Ce@S-Bi2O3 that leads to efficient formate production. This study opens up new avenues for designing metal and element-doped electrocatalysts to improve the catalytic activity and selectivity for ECO2RR.

2.
Small ; 19(30): e2300049, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37058139

ABSTRACT

Tuning the coordination environment and geometric structures of single atom catalysts is an effective approach for regulating the reaction mechanism and maximize the catalytic efficiency of single-atom centers. Here, a template-based synthesis strategy is proposed for the synthesis of high-density NiNx sites anchored on the surface of hierarchically porous nitrogen-doped carbon nanofibers (Ni-HPNCFs) with different coordination environments. First-principles calculations and advanced characterization techniques demonstrate that the single Ni atom is strongly coordinated with both pyrrolic and pyridinic N dopants, and that the predominant sites are stabilized by NiN3 sites. This dual engineering strategy increases the number of active sites and utilization efficiency of each single atom as well as boosts the intrinsic activity of each active site on a single-atom scale. Notably, the Ni-HPNCF catalyst achieves a high CO Faradaic efficiency (FECO ) of 97% at a potential of -0.7 V, a high CO partial current density (jCO ) of 49.6 mA cm-2 (-1.0 V), and a remarkable turnover frequency of 24 900 h-1 (-1.0 V) for CO2 reduction reactions (CO2 RR). Density functional theory calculations show that compared to pyridinic-type NiNx , the pyrrolic-type NiN3 moieties display a superior CO2 RR activity over hydrogen evolution reactions, resulting in their superior catalytic activity and selectivity.

3.
Small ; 19(11): e2206726, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36599644

ABSTRACT

The development of trifunctional electrocatalyst for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) with deeply understanding the mechanism to enhance the electrochemical performance is still a challenging task. In this work, the distorted metastable hybrid-phase induced 1T'/1T Co,PSnS2 nanosheets on carbon cloth (1T'/1T Co,PSnS2 @CC) is prepared and examined. The density functional theoretical (DFT) calculation suggests that the distorted 1T'/1T Co,PSnS2 can provide excellent conductivity and strong hydrogen adsorption ability. The electronic structure tuning and enhancement mechanism of electrochemical performance are investigated and discussed. The optimal 1T'/1T Co,PSnS2 @CC catalyst exhibits low overpotential of ≈94 and 219.7 mV at 10 mA cm-2 for HER and OER, respectively. Remarkably, the catalyst exhibits exceptional ORR activity with small onset potential value (≈0.94 V) and half-wave potential (≈0.87 V). Most significantly, the 1T'/1T Co,PSnS2 ||Co,PSnS2 electrolyzer required small cell voltages of ≈1.53, 1.70, and 1.82 V at 10, 100, and 400 mA cm-2 , respectively, which are better than those of state-of-the-art Pt-C||RuO2 (≈1.56 and 1.84 V at 10 and 100 mA cm-2 ). The present study suggests a new approach for the preparation of large-scalable, high performance hierarchical 3D next-generation trifunctional electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...