Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 19(19): 12431-12440, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28470317

ABSTRACT

Carbon dioxide absorption by mixtures of two ionic liquids with a common cation-1-butyl-3-methylimidazolium acetate, [C4C1Im][OAc], and 1-butyl-3-methylimidazolium tricyanomethanide, [C4C1Im][C(CN)3]-was determined experimentally at pressures below atmospheric pressure as a function of temperature between 303 K and 343 K, and at 303 K as a function of pressure up to 10 bar. It is observed that the absorption of carbon dioxide decreases with increasing tricyanomethanide anion concentration and with increasing temperature, showing a maximum of 0.4 mole fraction of carbon dioxide in pure [C4C1Im][OAc] at 303 K. At this temperature, the CO2 absorption in the mixtures [C4C1Im][OAc](1-x)[C(CN)3]x is approximately the mole-fraction average of that in the pure ionic liquids. By applying an appropriate thermodynamic treatment, after identification of the species in solution, it was possible to calculate both the equilibrium constant, Keq, and Henry's law constant, KH, in the different mixtures studied thus obtaining an insight into the relative contribution of chemical and physical absorption of the gas. It is shown that chemical sorption proceeds through a 1 : 2 stoichiometry between CO2 and acetate-based ionic liquid. The presence of the C(CN)3- anion does not significantly affect the chemical reaction of the gas with the solvent (Keq = 75 ± 2 at 303 K) but leads to lower Henry's law constants (from KH = 77.8 ± 0.6 bar to KH = 49.5 ± 0.5 bar at 303 K), thus pointing towards larger physical absorption of the gas. The tricyanomethanide anion considerably improves the mass transfer by increasing the fluidity of the absorbent as proven by the larger diffusivities of all the ions when the concentration of the C(CN)3- anion increases in the mixtures.

2.
J Phys Chem B ; 121(2): 426-436, 2017 01 19.
Article in English | MEDLINE | ID: mdl-27997802

ABSTRACT

The effect on gas solubilities of adding partially fluorinated alkyl side chains either on imidazolium-based cations or on bis(perfluoroalkylsulfonyl)amide anions was studied. The aim was to gain knowledge of the mechanisms of dissolution of gases in fluorinated ionic liquids and, if possible, to improve physical absorption of carbon dioxide in ionic liquids. We have determined experimentally, in the temperature range of 298-343 K and at pressures close to atmospheric pressure, the solubility and thermodynamics of solvation of carbon dioxide, ethane, and nitrogen in the ionic liquids 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide ([C8mim][NTf2]), 1-octyl-3-methylimidazolium bis[pentafluoroethylsulfonyl]amide ([C8mim][BETI]), 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium bis[trifluoromethylsulfonyl]amide ([C8H4F13mim][NTf2]), and 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium bis[pentafluoroethylsulfonyl]amide ([C8H4F13mim][BETI]). Ionic liquids with partial fluorination on the cation were found to exhibit higher carbon dioxide and nitrogen mole fraction solubilities but lower ethane solubilities, compared to those of their hydrogenated counterparts. Molecular simulation provided insights about the mechanisms of solvation of the different gases in the ionic liquids.

3.
Phys Chem Chem Phys ; 18(33): 23285-95, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27498753

ABSTRACT

The equilibrium and transport properties of mixtures of two ionic liquids - [C4C1Im][OAc] and [C4C1Im][C(CN)3] - were determined and interpreted at the molecular level using vibration spectroscopy, NMR and molecular dynamics simulation. The non-ideality of the mixtures [C4C1Im][OAc](1-x)[C(CN)3]x was characterized by V(E) = +0.28 cm(3) mol(-1) (293 K, x = 0.65) and H(E) = -2.2 kJ mol(-1) for x = 0.5. These values could be explained by a rearrangement of the hydrogen-bond network of the mixture that favours the interaction of the acetate anion with the imidazolium cation at position C2. The dynamic properties of the mixture are also dramatically influenced by the composition with a decrease of the viscosity and an increase of self-diffusion coefficients of the ions when the amount of tricyanomethanide anion increases in the mixture.

4.
Chem Rev ; 116(10): 6075-106, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27144455

ABSTRACT

A complete review of the published data on the mixing enthalpies of mixtures containing ionic liquids, measured directly using calorimetric techniques, is presented in this paper. The field of ionic liquids is very active and a number of research groups in the world are dealing with different applications of these fluids in the fields of chemistry, chemical engineering, energy, gas storage and separation or materials science. In all these fields, the knowledge of the energetics of mixing is capital both to understand the interactions between these fluids and the different substrates and also to establish the energy and environmental cost of possible applications. Due to the relative novelty of the field, the published data is sometimes controversial and recent reviews are fragmentary and do not represent a set of reliable data. This fact can be attributed to different reasons: (i) difficulties in controlling the purity and stability of the ionic liquid samples; (ii) availability of accurate experimental techniques, appropriate for the measurement of viscous, charged, complex fluids; and (iii) choice of an appropriate clear thermodynamic formalism to be used by an interdisciplinary scientific community. In this paper, we address all these points and propose a critical review of the published data, advise on the most appropriate apparatus and experimental procedure to measure this type of physical-chemical data in ionic liquids as well as the way to treat the information obtained by an appropriate thermodynamic formalism.

5.
Chem Commun (Camb) ; 51(21): 4485-7, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25683335

ABSTRACT

The heat of dissolution of cellulose in one imidazolium acetate ionic liquid was determined experimentally. The value of -132 ± 8 J g(-1) indicates that the dissolution is exothermal thus confirming energetically favourable cellulose-ionic liquid interactions but indicating that an increase in temperature does not thermodynamically favour the dissolution process.

6.
J Chem Phys ; 139(5): 054510, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23927273

ABSTRACT

Raman spectra in the range of the totally symmetric stretching mode of the [PF6](-) anion, νs(PF6), have been measured for 1-alkyl-3-methylimidazolium ionic liquids [CnC1im][PF6], for n = 4, 6, and 8, as a function of pressure at room temperature. The ionic liquids [C6C1im][PF6] and [C8C1im][PF6] remain in an amorphous phase up to 3.5 GPa, in contrast to [C4C1im][PF6], which crystallizes above ~0.5 GPa. Equations of state based either on a group contribution model or Carnahan-Starling-van der Waals model have been used to estimate the densities of the ionic liquids at high pressures. The shifts of the vibrational frequency of νs(PF6) with density observed in [C6C1im][PF6] and in [C8C1im][PF6] have been calculated by a hard-sphere model of a pseudo-diatomic solute under short-range repulsive interactions with the neighboring particles. The stochastic model of Kubo for vibrational dephasing has been used to obtain the amplitude of vibrational frequency fluctuation, <Δω(2)>, and the relaxation time of frequency fluctuation, τc, as a function of density by Raman band shape analysis of the νs(PF6) mode of [C6C1im][PF6] and [C8C1im][PF6].


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Pressure , Spectrum Analysis, Raman , Vibration
7.
J Phys Chem B ; 116(26): 7728-38, 2012 Jul 05.
Article in English | MEDLINE | ID: mdl-22680072

ABSTRACT

We measured the densities of 1-alkyl-3-methylimidazolium (C(n)mim, n = 2,4,6) tris(pentafluoroethyl)trifluorophosphate ionic liquids (eFAP) as a function of temperature and pressure and their viscosities as a function of temperature. These ionic liquids are less viscous than those based in the same cations but with other anions such as bis(trifluoromethylsulfonyl)imide. The ionic liquids studied are only partially miscible with water, their solubility increasing with the size of the alkyl side-chain of the cation and with temperature (from x(H(2)O) = 0.20 ± 0.03 for [C(4)mim][eFAP] at 303.10 K to x(H(2)O) = 0.49 ± 0.07 for [C(6)mim][eFAP] at 315.10 K). The solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in the three ionic liquids was measured as a function of temperature and at pressures close to atmospheric. Carbon dioxide and nitrous oxide are the more soluble gases with mole fraction solubilities of the order of 3 × 10(-2) at 303 K. The solubility of these gases does not increase linearly with the size of the alkyl-side chain of the cation. The solubilities of ethane and nitrogen are much lower than those of carbon dioxide and nitrous oxide (mole fractions 60% and 90% lower, respectively). The higher solubility of CO(2) and N(2)O can be explained by more favorable interactions between the solutes and the polar region of the ionic liquids as shown by the enthalpies of solvation determined experimentally and by the calculation of the site-site solute-solvent radial distribution functions using molecular simulation.

8.
J Colloid Interface Sci ; 360(2): 606-16, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21601215

ABSTRACT

Three pyrrolidinium-based ionic liquids-N-dodecyl-N-methylpyrrolidinium bromide, N-butyl-N-octylpyrrolidinium bromide, and N-butyl-N-dodecylpyrrolodinium bromide-were synthesized and characterized by their decomposition temperatures (T(d)) measured by thermogravimetric analysis, and by their melting point (T(m)), glass transition (T(g)) and crystallization temperatures (T(cryst)) determined by differential scanning calorimetry. Their self-aggregation properties in aqueous solution were studied and their behavior is compared with that of analogous conventional cationic surfactants, namely tetra-alkylammonium bromide salts. The critical micellar concentration, cmcs were obtained by isothermal titration calorimetry (ITC); which were further validated by measurements of interfacial tension, fluorescence and NMR spectroscopy. Enthalpies of micellization were measured at three different temperatures using ITC. The Taylor dispersion method and DOSY NMR were used to determine diffusion coefficients of the ionic liquid surfactants in aqueous solution at 298.15K. Several correlations between structural features of the surfactant species, such as the number and size of their alkyl chains, and the thermodynamic quantities of micellization-expressed by experimental values of cmc, counter-ion binding fraction, Δ(mic)G°, Δ(mic)°, and Δ(mic)S°-are established. We could interpret the different contributions of the two alkyl side chains to the aggregation properties in terms of the balance of interactions in homogeneous and micellar phases, contributing to understanding the aggregation behavior of ionic liquids in water and the parallel between these systems and traditional ionic surfactants.

9.
Top Curr Chem ; 290: 161-83, 2010.
Article in English | MEDLINE | ID: mdl-21107797

ABSTRACT

The high degree of organisation in the fluid phase of room-temperature ionic liquids has major consequences on their macroscopic properties, namely on their behaviour as solvents. This nanoscale self-organisation is the result of an interplay between two types of interaction in the liquid phase - Coulomb and van der Waals - that eventually leads to the formation of medium-range structures and the recognition of some ionic liquids as composed of a high-charge density, cohesive network permeated by low-charge density regions.In this chapter, the structure of the ionic liquids will be explored and some of their consequences to the properties of ionic liquids analyzed.


Subject(s)
Ionic Liquids , Thermodynamics , Inorganic Chemicals , Ionic Liquids/chemistry , Solvents/chemistry , Temperature
10.
J Phys Chem B ; 114(10): 3608-17, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20178327

ABSTRACT

It is proven in this work that it is possible to significantly increase the carbon dioxide uptake by an ionic liquid relying on physical interactions only. The solubility and thermodynamics of solvation of carbon dioxide in the ionic liquids 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide [C(8)mim][Ntf(2)], 1-decyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide [C(10)mim][Ntf(2)], and 1-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-3-methylimidazolium bis[trifluoromethylsulfonyl]amide [C(8)H(4)F(13)mim][Ntf(2)] were determined experimentally between 298 and 343 K at pressures close to atmospheric. The solubility of carbon dioxide is significantly higher in the fluorine-substituted ionic liquid with Henry's law constants at 303 K of 33.3 and 30.7 bar for [C(8)mim][Ntf(2)] and [C(10)mim][Ntf(2)], respectively, and of 28.0 bar for [C(8)H(4)F(13)mim][Ntf(2)]. Molecular simulation was used for interpreting the molecular mechanisms of solvation of carbon dioxide in the studied ionic liquids and coherent molecular mechanisms of solvation are proposed in light of the solute-solvent radial distribution functions. It is shown that the increase of the size of the hydrogenated or fluorinated alkyl chain in the imidazolium cation does not lead to a steady augmentation of the gaseous uptake by the liquid probably due to an increase of the nonpolar domains of the ionic liquid, carbon dioxide being solvated preferentially in the charged regions of the solvent.

11.
J Phys Chem B ; 112(39): 12394-400, 2008 Oct 02.
Article in English | MEDLINE | ID: mdl-18781808

ABSTRACT

The interactions between ionic liquids and totally fluorinated alkanes are investigated by associating gas solubility measurements with molecular simulation calculations. Experimental values for the solubility of perfluoromethane, perfluoroethane, and perfluoropropane in one ionic liquidtrihexyltetradecylphophonium bis(trifluoromethylsulfonyl)amide [P 6,6,6,14][Ntf 2]are reported between 303 and 343 K and close to atmospheric pressure. All mole fraction solubilities decrease with increasing temperature. From the variation of Henry's law constants with temperature, the thermodynamic functions of solvation were calculated. The precision of the experimental data, considered as the average absolute deviation of the Henry's law constants from appropriate smoothing equations, is always better than +/-3%. By the analysis of the differences between the solute-solvent radial distribution functions of perfluoromethane and perfluoropropane obtained by molecular simulation, it was possible to explain why solubility increases with the size of the perfluoroalkane. The trend of solubility is explained on the basis of the location of the solute with respect to the solvent ions as well as on the differences in the solute-solvent energies of interaction.

12.
J Phys Chem B ; 112(21): 6653-64, 2008 May 29.
Article in English | MEDLINE | ID: mdl-18461988

ABSTRACT

The solubility of halogen gases--fluorine, chlorine and bromine--has been determined experimentally in several fluorinated solvents between 283 and 323 K at atmospheric pressure. The solubility of chlorine was studied in perfluorooctane, perfluorohexane, perfluorohexylethane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, perfluoro-2-butyltetrahydrofuran, and perfluoroperhydrophenanthrene and was found to be on the order of 10(-2) in mole fraction. The solubility of fluorine in the studied fluorinated solvents at 298 K is 1 order of magnitude lower than the solubility of chlorine. The solubility of bromine was studied as a function of temperature in perfluorooctane, and it was found to be higher than that of chlorine but of the same order of magnitude. The experimental studies were complemented by molecular simulation calculations. The molecular force fields used for the halogen gases and for the fluorinated solvents were taken, when possible, from the literature. An intermolecular potential model had to be developed for perfluoro-2-butyltetrahydrofuran, with a functional form of the Lennard-Jones plus point charges type. The solubility of the three gases was calculated by molecular simulation using Widom test-particle insertion. Dissimilar interaction parameters of 0.89 and 0.75 in the Lennard-Jones well depths between the solute and the solvent had to be introduced to reach agreement with the experimental results for chlorine and fluorine solubilities, respectively. The structure of the solutions was studied by analysis of solute-solvent radial distribution functions. It was found that the preferential solvation sites for the halogen gases are the terminal CF3 groups of the different fluorinated solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...