Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Antioxidants (Basel) ; 11(2)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35204174

ABSTRACT

Prostate cancer (PCa) cells display abnormal expression of proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown the anti-tumoral role of heme oxygenase 1 (HO-1) in this disease. In this work, we undertook a mass spectrometry-based proteomics study to identify HO-1 molecular interactors that might collaborate with its modulatory function in PCa. Among the HO-1 interactors, we identified proteins with nuclear localization. Correlation analyses, using the PCa GSE70770 dataset, showed a significant and positive correlation between HMOX1 and 6 of those genes. Alternatively, HMOX1 and YWHAZ showed a negative correlation. Univariable analyses evidenced that high expression of HNRNPA2B1, HSPB1, NPM1, DDB1, HMGA1, ZC3HAV1, and HMOX1 was associated with increased relapse-free survival (RFS) in PCa patients. Further, PCa patients with high HSPB1/HMOX1, DDB1/HMOX1, and YWHAZ/HMOX1 showed a worse RFS compared with patients with lower ratios. Moreover, a decrease in RFS for patients with higher scores of this signature was observed using a prognostic risk score model. However, the only factor significantly associated with a higher risk of relapse was high YWHAZ. Multivariable analyses confirmed HSPB1, DDB1, and YWHAZ independence from PCa clinic-pathological parameters. In parallel, co-immunoprecipitation analysis in PCa cells ascertained HO-1/14-3-3ζ/δ (protein encoded by YWHAZ) interaction. Herein, we describe a novel protein interaction between HO-1 and 14-3-3ζ/δ in PCa and highlight these factors as potential therapeutic targets.

2.
Oncogene ; 40(44): 6284-6298, 2021 11.
Article in English | MEDLINE | ID: mdl-34584218

ABSTRACT

Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.


Subject(s)
Androgen Antagonists/pharmacology , Ketone Bodies/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Animals , Cell Line, Tumor , Disease Progression , Fatty Acids/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Neoplasm Transplantation , Prostatic Neoplasms, Castration-Resistant/metabolism , Signal Transduction/drug effects
3.
Antioxidants (Basel) ; 10(6)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208670

ABSTRACT

Prostate cancer (PCa) is the second most diagnosed malignancy and the fifth leading cause of cancer associated death in men worldwide. Dysregulation of cellular energetics has become a hallmark of cancer, evidenced by numerous connections between signaling pathways that include oncoproteins and key metabolic enzymes. We previously showed that heme oxygenase 1 (HO-1), a cellular homeostatic regulator counteracting oxidative and inflammatory damage, exhibits anti-tumoral activity in PCa cells, inhibiting cell proliferation, migration, tumor growth and angiogenesis. The aim of this study was to assess the role of HO-1 on the metabolic signature of PCa. After HO-1 pharmacological induction with hemin, PC3 and C4-2B cells exhibited a significantly impaired cellular metabolic rate, reflected by glucose uptake, ATP production, lactate dehydrogenase (LDH) activity and extracellular lactate levels. Further, we undertook a bioinformatics approach to assess the clinical significance of LDHA, LDHB and HMOX1 in PCa, identifying that high LDHA or low LDHB expression was associated with reduced relapse free survival (RFS). Interestingly, the shortest RFS was observed for PCa patients with low HMOX1 and high LDHA, while an improved prognosis was observed for those with high HMOX1 and LDHB. Thus, HO-1 induction causes a shift in the cellular metabolic profile of PCa, leading to a less aggressive phenotype of the disease.

4.
Eur Biophys J ; 49(7): 643-659, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33141270

ABSTRACT

Filopodia are actin-built finger-like dynamic structures that protrude from the cell cortex. These structures can sense the environment and play key roles in migration and cell-cell interactions. The growth-retraction cycle of filopodia is a complex process exquisitely regulated by intra- and extra-cellular cues, whose nature remains elusive. Filopodia present wide variation in length, lifetime and growth rate. Here, we investigate the features of filopodia patterns in fixed prostate tumor cells by confocal microscopy. Analysis of almost a thousand filopodia suggests the presence of two different populations: one characterized by a narrow distribution of lengths and the other with a much more variable pattern with very long filopodia. We explore a stochastic model of filopodial growth which takes into account diffusion and reactions involving actin and the regulatory proteins formin and capping, and retrograde flow. Interestingly, we found an inverse dependence between the filopodial length and the retrograde velocity. This result led us to propose that variations in the retrograde velocity could explain the experimental lengths observed for these tumor cells. In this sense, one population involves a wider range of retrograde velocities than the other population, and also includes low values of this velocity. It has been hypothesized that cells would be able to regulate retrograde flow as a mechanism to control filopodial length. Thus, we propound that the experimental filopodia pattern is the result of differential retrograde velocities originated from heterogeneous signaling due to cell-substrate interactions or prior cell-cell contacts.


Subject(s)
Cell Communication , Formins/chemistry , Myosins/chemistry , Pseudopodia/physiology , Actins , Algorithms , Cell Movement , Computer Simulation , Cytoplasm/metabolism , Diffusion , Humans , Microscopy, Confocal , PC-3 Cells , Probability , Signal Transduction , Stochastic Processes
5.
Biomolecules ; 10(3)2020 03 18.
Article in English | MEDLINE | ID: mdl-32197509

ABSTRACT

BACKGROUND: Prostate cancer (PCa) dissemination shows a tendency to develop in the bone, where heme oxygenase 1 (HO-1) plays a critical role in bone remodeling. Previously by LC/ESI-MSMS, we screened for HO-1 interacting proteins and identified annexin 2 (ANXA2). The aim of this study was to analyze the relevance of ANXA2/HO-1 in PCa and bone metastasis. METHODS: We assessed ANXA2 levels using a co-culture transwell system of PC3 cells (pre-treated or not with hemin, an HO-1 specific inducer) and the pre-osteoclastic Raw264.7 cell line. RESULTS: Under co-culture conditions, ANXA2 mRNA levels were significantly modulated in both cell lines. Immunofluorescence analysis unveiled a clear ANXA2 reduction in cell membrane immunostaining for Raw264.7 under the same conditions. This effect was supported by the detection of a decrease in Ca2+ concentration in the conditioned medium. HO-1 induction in tumor cells prevented both, the ANXA2 intracellular relocation and the decrease in Ca2+ concentration. Further, secretome analysis revealed urokinase (uPA) as a key player in the communication between osteoclast progenitors and PC3 cells. To assess the clinical significance of ANXA2/HO-1, we performed a bioinformatics analysis and identified that low expression of each gene strongly associated with poor prognosis in PCa regardless of the clinico-pathological parameters assessed. Further, these genes appear to behave in a dependent manner. CONCLUSIONS: ANXA2/HO-1 rises as a critical axis in PCa.


Subject(s)
Annexin A2/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Heme Oxygenase-1/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Tumor Microenvironment , Animals , Bone Neoplasms/pathology , Bone and Bones/metabolism , Bone and Bones/pathology , Humans , Male , Mice , Neoplasm Metastasis , PC-3 Cells , Prostatic Neoplasms/pathology , RAW 264.7 Cells
6.
Cell Death Dis ; 10(4): 299, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30931931

ABSTRACT

About 20% of prostate cancer (PCa) patients progress to metastatic disease. Metabolic syndrome (MeS) is a pathophysiological disorder that increases PCa risk and aggressiveness. C-terminal binding protein (CTBP1) is a transcriptional corepressor that is activated by high-fat diet (HFD). Previously, our group established a MeS/PCa mice model that identified CTBP1 as a novel link associating both diseases. Here, we integrated in vitro (prostate tumor cell lines) and in vivo (MeS/PCa NSG mice) models with molecular and cell biology techniques to investigate MeS/CTBP1 impact over PCa progression, particularly over cell adhesion, mRNA/miRNA expression and PCa spontaneous metastasis development. We found that CTBP1/MeS regulated expression of genes relevant to cell adhesion and PCa progression, such as cadherins, integrins, connexins, and miRNAs in PC3 xenografts. CTBP1 diminished PCa cell adhesion, membrane attachment to substrate and increased filopodia number by modulating gene expression to favor a mesenchymal phenotype. NSG mice fed with HFD and inoculated with CTBP1-depleted PC3 cells, showed a decreased number and size of lung metastases compared to control. Finally, CTBP1 and HFD reduce hsa-mir-30b-5p plasma levels in mice. This study uncovers for the first time the role of CTBP1/MeS in PCa progression and its molecular targets.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cell Adhesion/genetics , DNA-Binding Proteins/metabolism , Metabolic Syndrome/genetics , MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA, Messenger/genetics , Alcohol Oxidoreductases/genetics , Animals , DNA-Binding Proteins/genetics , Diet, High-Fat , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Heterografts/cytology , Heterografts/metabolism , Humans , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/metabolism , Neoplasm Metastasis , PC-3 Cells , Prostatic Neoplasms/pathology , Pseudopodia/genetics , Pseudopodia/metabolism , RNA, Messenger/metabolism
7.
Int J Mol Sci ; 20(5)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813528

ABSTRACT

Glucocorticoids are used during prostate cancer (PCa) treatment. However, they may also have the potential to drive castration resistant prostate cancer (CRPC) growth via the glucocorticoid receptor (GR). Given the association between inflammation and PCa, and the anti-inflammatory role of heme oxygenase 1 (HO-1), we aimed at identifying the molecular processes governed by the interaction between HO-1 and GR. PCa-derived cell lines were treated with Hemin, Dexamethasone (Dex), or both. We studied GR gene expression by RTqPCR, protein expression by Western Blot, transcriptional activity using reporter assays, and nuclear translocation by confocal microscopy. We also evaluated the expression of HO-1, FKBP51, and FKBP52 by Western Blot. Hemin pre-treatment reduced Dex-induced GR activity in PC3 cells. Protein levels of FKBP51, a cytoplasmic GR-binding immunophilin, were significantly increased in Hemin+Dex treated cells, possibly accounting for lower GR activity. We also evaluated these treatments in vivo using PC3 tumors growing as xenografts. We found non-significant differences in tumor growth among treatments. Immunohistochemistry analyses revealed strong nuclear GR staining in almost all groups. We did not observe HO-1 staining in tumor cells, but high HO-1 reactivity was detected in tumor infiltrating macrophages. Our results suggest an association and crossed modulation between HO-1 and GR pathways.


Subject(s)
Heme Oxygenase-1/metabolism , Prostatic Neoplasms/metabolism , Receptors, Glucocorticoid/metabolism , Animals , Cell Line, Tumor , Dexamethasone/pharmacology , Disease-Free Survival , Heme Oxygenase-1/genetics , Hemin/pharmacology , Humans , Male , Mice , Promoter Regions, Genetic/genetics , Response Elements/genetics , Signal Transduction , Tacrolimus Binding Proteins/metabolism , Xenograft Model Antitumor Assays
8.
Cell Death Dis ; 9(2): 140, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29396431

ABSTRACT

An abrupt increase in metastatic growth as a consequence of the removal of primary tumors suggests that the concomitant resistance (CR) phenomenon might occur in human cancer. CR occurs in murine tumors and ROS-damaged phenylalanine, meta-tyrosine (m-Tyr), was proposed as the serum anti-tumor factor primarily responsible for CR. Herein, we demonstrate for the first time that CR happens in different experimental human solid tumors (prostate, lung anaplastic, and nasopharyngeal carcinoma). Moreover, m-Tyr was detected in the serum of mice bearing prostate cancer (PCa) xenografts. Primary tumor growth was inhibited in animals injected with m-Tyr. Further, the CR phenomenon was reversed when secondary implants were injected into mice with phenylalanine (Phe), a protective amino acid highly present in primary tumors. PCa cells exposed to m-Tyr in vitro showed reduced cell viability, downregulated NFκB/STAT3/Notch axis, and induced autophagy; effects reversed by Phe. Strikingly, m-Tyr administration also impaired both, spontaneous metastasis derived from murine mammary carcinomas (4T1, C7HI, and LMM3) and PCa experimental metastases. Altogether, our findings propose m-Tyr delivery as a novel approach to boost the therapeutic efficacy of the current treatment for metastasis preventing the escape from tumor dormancy.


Subject(s)
Neoplasm Metastasis/pathology , Phenylalanine/metabolism , Reactive Oxygen Species/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Down-Regulation , Drug Resistance, Neoplasm , Humans , Male , Mice, Nude , Prostatic Neoplasms/pathology , Serum , Signal Transduction , Subcutaneous Tissue/pathology , Tyrosine/metabolism , Xenograft Model Antitumor Assays
10.
Cell Death Dis ; 7(12): e2570, 2016 12 29.
Article in English | MEDLINE | ID: mdl-28032857

ABSTRACT

Prostate cancer (PCa) cells display abnormal expression of cytoskeletal proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown that heme oxygenase 1 (HO-1) is implicated in cell morphology regulation in PCa. Here, through a multi 'omics' approach we define the HO-1 interactome in PCa, identifying HO-1 molecular partners associated with the integrity of the cellular cytoskeleton. The bioinformatics screening for these cytoskeletal-related partners reveal that they are highly misregulated in prostate adenocarcinoma compared with normal prostate tissue. Under HO-1 induction, PCa cells present reduced frequency in migration events, trajectory and cell velocity and, a significant higher proportion of filopodia-like protrusions favoring zippering among neighboring cells. Moreover forced expression of HO-1 was also capable of altering cell protrusions in transwell co-culture systems of PCa cells with MC3T3 cells (pre-osteoblastic cell line). Accordingly, these effects were reversed under siHO. Transcriptomics profiling evidenced significant modulation of key markers related to cell adhesion and cell-cell communication under HO-1 induction. The integration from our omics-based research provides a four molecular pathway foundation (ANXA2/HMGA1/POU3F1; NFRSF13/GSN; TMOD3/RAI14/VWF; and PLAT/PLAU) behind HO-1 regulation of tumor cytoskeletal cell compartments. The complementary proteomics and transcriptomics approaches presented here promise to move us closer to unravel the molecular framework underpinning HO-1 involvement in the modulation of cytoskeleton pathways, pushing toward a less aggressive phenotype in PCa.


Subject(s)
Cell Communication/genetics , Gene Regulatory Networks , Heme Oxygenase-1/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Pseudopodia/metabolism , Animals , Cell Communication/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Coculture Techniques , Crystallography, X-Ray , Culture Media, Conditioned/pharmacology , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Male , Mice , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/genetics , Protein Binding/drug effects , Proteomics , Pseudopodia/drug effects , Sequence Analysis, RNA , Tandem Mass Spectrometry , Transcriptome/drug effects , Transcriptome/genetics
11.
Mol Cancer Res ; 13(11): 1455-64, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26227317

ABSTRACT

UNLABELLED: Prostate cancer is the second leading cause of cancer-related death in men worldwide. Many factors that participate in the development of prostate cancer promote imbalance in the redox state of the cell. Accumulation of reactive oxygen species causes injury to cell structures, ultimately leading to cancer development. The antioxidant enzyme heme oxygenase 1 (HMOX1/HO-1) is responsible for the maintenance of the cellular homeostasis, playing a critical role in the oxidative stress and the regulation of prostate cancer development and progression. In the present study, the transcriptional regulation of HO-1 was investigated in prostate cancer. Interestingly, the tumor suppressor BRCA1 binds to the HO-1 promoter and modulates HO-1, inducing its protein levels through both the increment of its promoter activity and the induction of its transcriptional activation. In addition, in vitro and in vivo analyses show that BRCA1 also controls HO-1-negative targets: MMP9, uPA, and Cyclin D1. HO-1 transcriptional regulation is also modulated by oxidative and genotoxic agents. Induction of DNA damage by mitoxantrone and etoposide repressed HO-1 transcription, whereas hydrogen peroxide and doxorubicin induced its expression. Xenograft studies showed that HO-1 regulation by doxorubicin also occurs in vivo. Immunofluorescence analysis revealed that BRCA1 overexpression and/or doxorubicin exposure induced the cytoplasmic retention of HO-1. Finally, the transcription factor NRF2 cooperates with BRCA1 protein to activate HO-1 promoter activity. In summary, these results show that the activation of BRCA1-NRF2/HO-1 axis defines a new mechanism for the maintenance of the cellular homeostasis in prostate cancer. IMPLICATIONS: Oxidative and genotoxic stress converge on HO-1 transcriptional activity through the combined actions of BRCA1 and NRF2.


Subject(s)
BRCA1 Protein/metabolism , Heme Oxygenase-1/genetics , Prostatic Neoplasms/metabolism , Animals , Cell Line, Tumor , DNA Damage/genetics , Heme Oxygenase-1/metabolism , Heterografts , Humans , Male , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress/genetics , Prostatic Neoplasms/pathology , Protein Binding , Transcriptional Activation
12.
Oncotarget ; 5(12): 4087-102, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24961479

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer death in men. Although previous studies in PCa have focused on cell adherens junctions (AJs), key players in metastasis, they have left the molecular mechanisms unexplored. Inflammation and the involvement of reactive oxygen species (ROS) are critical in the regulation of cell adhesion and the integrity of the epithelium. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage. Here, we investigated whether HO-1 is implicated in the adhesive and morphological properties of tumor cells. Genes differentially regulated by HO-1 were enriched for cell motility and adhesion biological processes. HO-1 induction, increased E-cadherin and ß-catenin levels. Immunofluorescence analyses showed a striking remodeling of E-cadherin/ ß-catenin based AJs under HO-1 modulation. Interestingly, the enhanced levels of E-cadherin and ß-catenin coincided with a markedly change in cell morphology. To further our analysis we sought to identify HO-1 binding proteins that might participate in the regulation of cell morphology. A proteomics approach identified Muskelin, as a novel HO-1 partner, strongly implicated in cell morphology regulation. These results define a novel role for HO-1 in modulating the architecture of cell-cell interactions, favoring a less aggressive phenotype and further supporting its anti-tumoral function in PCa.


Subject(s)
Cadherins/metabolism , Heme Oxygenase-1/genetics , Prostatic Neoplasms/genetics , beta Catenin/metabolism , Animals , Cell Adhesion , Down-Regulation , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/metabolism , Reactive Oxygen Species , Signal Transduction , Xenograft Model Antitumor Assays
13.
J Clin Rheumatol ; 15(5): 238-40, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19590446

ABSTRACT

Joint involvement is unusual in patients with monoclonal gammopathies. It has been characteristically described as a rheumatoid-like seronegative polyarticular erosive arthropathy, which also has been related to crystal deposition of cryoglobulins in the synovium and several other tissues. This report describes the case of a 57-year-old African American woman with a seronegative polyarthritis associated with deposition of nonbirefringent or weakly positive birefringent rhomboid-shaped crystals in the synovial fluid. The patient, who was subsequently diagnosed with multiple myeloma, showed good clinical response to oral and intra-articular corticosteroids. Type II cryoglobulins were identified in the serum as well as in the synovial fluid. It is important to consider this association as part of the differential diagnosis of a patient with multiple myeloma and arthritis.


Subject(s)
Arthritis/etiology , Cryoglobulins/analysis , Multiple Myeloma/complications , Multiple Myeloma/diagnosis , Synovial Fluid/chemistry , Black or African American , Cryoglobulinemia/diagnosis , Female , Humans , Middle Aged
14.
Neurosci Lett ; 461(1): 49-53, 2009 Sep 11.
Article in English | MEDLINE | ID: mdl-19500649

ABSTRACT

Sex influences histological and behavioral outcomes following traumatic brain injury (TBI), but the underlying sex-dependent pathomechanisms regulating outcome measures remain poorly defined. Here, we investigated the TBI-induced regulation of the X-linked inhibitor of apoptosis protein (XIAP) that, in addition to suppressing cell death by inhibition of caspases, is involved in signaling cascades, including immune regulation and cell migration. Since estrogen has been shown to have anti-apoptotic properties, we specifically examined sex differences and the influence of estrogen on XIAP processing after TBI. Sprague-Dawley male (TBI-M), female (TBI-F), ovariectomized female (TBI-OVX) and ovariectomized females supplemented with estrogen (TBI-OVX+EST) were subjected to moderate (1.7-2.2atm) fluid percussion (FP) injury. Animals were sacrificed 24h after FP injury; cortical tissue (ipsilateral and contralateral) was dissected and analyzed for XIAP processing by immunoblot analysis (n=6-7/group) or confocal microscopy (n=2-3/group). Significant differences in XIAP cleavage products in the ipsilateral cortex were found between groups (p<0.03). Post hoc analysis showed an increase in XIAP processing in both TBI-F and TBI-OVX+EST compared to TBI-M and TBI-OVX (p<0.05), indicating that more XIAP is cleaved following injury in intact females and TBI-OVX+EST than in TBI-M and TBI-OVX groups. Co-localization of XIAP within neurons also demonstrated sex-dependent changes. Based on these data, it appears that the processing of XIAP after injury is different between males and females and may be influenced by exogenous estrogen treatment.


Subject(s)
Brain Injuries/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Animals , Cerebral Cortex/metabolism , Estradiol/blood , Estradiol/pharmacology , Estrogens/pharmacology , Female , Fluorescent Antibody Technique , Male , Microscopy, Confocal , Neurons/metabolism , Ovariectomy , Rats , Rats, Sprague-Dawley , Sex Factors
15.
VozAndes ; 20: 12-15, 2009.
Article in Spanish | LILACS | ID: lil-555138

ABSTRACT

Introducción: La depresión es una enfermedad que afecta a adultos, niños y adolescentes. En adolescentes la presentación de la sintomatología parece estar relacionada con los eventos familiares y sociales que viven en la cotidianidad. El objetivo de este estudio fue determinar la prevalencia de sintomatología depresiva en escolares de sexto y séptimo grado de educación básica de los barrios de Fajardo, Chaupitena y Miranda Grande de Quito y asociar a factores de riesgo sicosocial. Métodos: Mediante un diseño de corte transversal se aplicó a los niños y adolescentes un conjunto de preguntas basado en el test CDI short, además el APGAR familiar infantil y el familiograma. Resultados: Participaron 195 estudiantes, la prevalencia de sintomatología depresiva fue 42 por ciento; 138 estudiantes reportaron patrón abusivo en el consumo de alcohol en la familia, maltrato físico en 101 estudiantes y maltrato psicológico en 128 niños. La percepción de un entorno familiar donde existe el patrón abusivo en el consumo de alcohol (OR 3,86 IC9S por ciento 1,88-7,92) y de disfunción familiar (OR 2,00 IC9S por ciento 1,00-3,98) se asociaron a la presencia de sintomatología depresiva. Conclusiones: Esta investigación evidencia que exísten condiciones de vida en los escolares que deberán reflexíonarse para favorecer la interrelación e interacciones entre el personal que trabaja en salud escolar, los docentes, los estudiantes y los padres de familia.


Subject(s)
Depression , Educational Status , Psychosocial Impact , Apgar Score
16.
Acta Neuropathol ; 109(6): 603-16, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15877231

ABSTRACT

The presence of progressive white matter atrophy following traumatic brain injury (TBI) has been reported in humans as well as in animal models. However, a quantitative analysis of progressive alterations in myelinated axons and other cellular responses to trauma has not been conducted. This study examined quantitative differences in myelinated axons from several white and gray matter structures between non-traumatized and traumatized areas at several time points up to 1 year. We hypothesize that axonal numbers decrease over time within the structures analyzed, based on our previous work demonstrating shrinkage of tissue in these vulnerable areas. Intubated, anesthetized male Sprague-Dawley rats were subjected to moderate (1.8-2.2 atm) parasagittal fluid-percussion brain injury, and perfused at various intervals after surgery. Sections from the fimbria, external capsule, thalamus and cerebral cortex from the ipsilateral hemisphere of traumatized and sham-operated animals were prepared and. estimated total numbers of myelinated axons were determined by systematic random sampling. Electron micrographs were obtained for ultrastructural analysis. A significant (P<0.05) reduction in the number of myelinated axons in the traumatized hemisphere compared to control in all structures was observed. In addition, thalamic and cortical axonal counts decreased significantly (P<0.05) over time. Swollen axons and macrophage/microglia infiltration were present as late as 6 months post-TBI in various structures. This study is the first to describe quantitatively chronic axonal changes in vulnerable brains regions after injury. Based on these data, a time-dependent decrease in the number of myelinated axons is seen to occur in vulnerable gray matter regions including the cerebral cortex and thalamus along with distinct morphological changes within white matter tracts after TBI. Although this progressive axonal response to TBI may include Wallerian degeneration, other potential mechanisms underlying this progressive pathological response within the white matter are discussed.


Subject(s)
Axons/pathology , Axons/ultrastructure , Brain Injuries/pathology , Brain/pathology , Nerve Degeneration/pathology , Animals , Atrophy , Male , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...