Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768391

ABSTRACT

Obesity and type 2 diabetes are associated with defects of insulin action in different tissues or alterations in ß-cell secretory capacity that may be triggered by environmental challenges, inadequate lifestyle choices, or an underlying genetic predisposition. In addition, recent data shows that obesity may also be caused by perturbations of the gut microbiota, which then affect metabolic function and energy homeostasis in the host. Maintenance of metabolic homeostasis in complex organisms such as mammals requires organismal-level communication, including between the different organs and the gut microbiota. Extracellular vesicles (EVs) have been identified in all domains of life and have emerged as crucial players in inter-organ and inter-kingdom crosstalk. Interestingly, EVs found in edible vegetables or in milk have been shown to influence gut microbiota or tissue function in mammals. Moreover, there is a multidirectional crosstalk mediated by EVs derived from gut microbiota and body organs that has implications for host health. Untangling this complex signaling network may help implement novel therapies for the treatment of metabolic disease.


Subject(s)
Diabetes Mellitus, Type 2 , Extracellular Vesicles , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Obesity/metabolism , Extracellular Vesicles/metabolism , Mammals , Communication
2.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499248

ABSTRACT

Most cells release extracellular vesicles (EVs) that can be detected circulating in blood. We and others have shown that the microRNA contents of these vesicles induce transcriptomic changes in acceptor cells, contributing to the adjustment of metabolic homeostasis in response to environmental demands. Here, we explore the potential for modulating obesity- and exercise-derived EV-microRNAs to treat the metabolic dysfunction associated with obesity in mice. Treatment with EV-miRNAs alleviated glucose intolerance and insulin resistance in obese mice to an extent similar to that of high-intensity interval training, although only exercise improved cardiorespiratory fitness and decreased body weight. Mechanistically, EV-miRNAs decreased fatty acid and cholesterol biosynthesis pathways in the liver, reducing hepatic steatosis and increasing insulin sensitivity, resulting in decreased glycemia and triglyceridemia. Our data suggest that manipulation of EV-miRNAs may be a viable strategy to alleviate metabolic dysfunction in obese and diabetic patients who are unable to exercise, although actual physical activity is needed to improve cardiorespiratory fitness.


Subject(s)
Extracellular Vesicles , Glucose Intolerance , Insulin Resistance , MicroRNAs , Mice , Animals , MicroRNAs/metabolism , Obesity/complications , Obesity/therapy , Extracellular Vesicles/metabolism , Glucose Intolerance/metabolism
3.
Cells ; 12(1)2022 12 31.
Article in English | MEDLINE | ID: mdl-36611962

ABSTRACT

Obesity and other closely associated diseases, such as metabolic-associated fatty liver disease (MAFLD) and type 2 diabetes, give rise to a common biometric and metabolic phenotype resulting from a different etiopathogenesis. To characterize the first stages of metabolic dysfunction induced by either obesity or hepatic steatosis, we compared two animal models of short-term feeding with either high-fat (HFD) or high-sucrose (SAC) diets. Using transcriptomic, metabolic, and calorimetric analyses, we determined that a short-term HFD leads to obesity and then hepatic steatosis through lipid storage, whereas SAC increases gluconeogenesis and de novo lipogenesis, resulting in hepatic steatosis followed later by obesity. Plasma exosomal miRNA profiles differed between HFD and SAC mice, and the injection of exosomes from HFD or SAC mice reproduced some transcriptomic and metabolic features of the donor mice. Finally, we exploited our data to identify circulating miR-22-3p as a candidate biomarker for MAFLD patient stratification. In conclusion, dietary challenges affecting adipose or hepatic metabolism regulate the abundance of exosomal miRNAs in plasma, which in turn modulate gene expression, helping the organism to adapt.


Subject(s)
Diabetes Mellitus, Type 2 , Exosomes , Non-alcoholic Fatty Liver Disease , Animals , Mice , Diabetes Mellitus, Type 2/metabolism , Exosomes/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Obesity/metabolism , Animal Feed
4.
Sci Rep ; 11(1): 11878, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088954

ABSTRACT

Amyloid deposits in pancreatic islets, mainly formed by human islet amyloid polypeptide (hIAPP) aggregation, have been associated with loss of ß-cell mass and function, and are a pathological hallmark of type 2 diabetes (T2D). Treatment with chaperones has been associated with a decrease in endoplasmic reticulum stress leading to improved glucose metabolism. The aim of this work was to investigate whether the chemical chaperone 4-phenylbutyrate (PBA) prevents glucose metabolism abnormalities and amyloid deposition in obese agouti viable yellow (Avy) mice that overexpress hIAPP in ß cells (Avy hIAPP mice), which exhibit overt diabetes. Oral PBA treatment started at 8 weeks of age, when Avy hIAPP mice already presented fasting hyperglycemia, glucose intolerance, and impaired insulin secretion. PBA treatment strongly reduced the severe hyperglycemia observed in obese Avy hIAPP mice in fasting and fed conditions throughout the study. This effect was paralleled by a decrease in hyperinsulinemia. Importantly, PBA treatment reduced the prevalence and the severity of islet amyloid deposition in Avy hIAPP mice. Collectively, these results show that PBA treatment elicits a marked reduction of hyperglycemia and reduces amyloid deposits in obese and diabetic mice, highlighting the potential of chaperones for T2D treatment.


Subject(s)
Hyperglycemia/drug therapy , Islet Amyloid Polypeptide/metabolism , Islets of Langerhans/metabolism , Obesity/drug therapy , Phenylbutyrates/pharmacology , Amyloid/metabolism , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Female , Glucose Intolerance/metabolism , Glucose Tolerance Test , Homeostasis , Hyperglycemia/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Transgenic , Obesity/metabolism
5.
Mol Metab ; 53: 101251, 2021 11.
Article in English | MEDLINE | ID: mdl-34015524

ABSTRACT

OBJECTIVE: Pancreatic ß-cell dysfunction is a central feature in the pathogenesis of type 2 diabetes (T2D). Accumulating evidence indicates that ß-site APP-cleaving enzyme 2 (BACE2) inhibition exerts a beneficial effect on ß-cells in different models of T2D. Thus, targeting BACE2 may represent a potential therapeutic strategy for the treatment of this disease. Here, we aimed to investigate the effects of BACE2 suppression on glucose homeostasis in a model of diet-induced obesity. METHODS: BACE2 knock-out (BKO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 2 or 16 weeks. Body weight, food intake, respiratory exchange ratio, locomotor activity, and energy expenditure were determined. Glucose homeostasis was evaluated by glucose and insulin tolerance tests. ß-cell proliferation was assessed by Ki67-positive nuclei, and ß-cell function was determined by measuring glucose-stimulated insulin secretion. Leptin sensitivity was evaluated by quantifying food intake and body weight after an intraperitoneal leptin injection. Neuropeptide gene expression and insulin signaling in the mediobasal hypothalamus were determined by qPCR and Akt phosphorylation, respectively. RESULTS: After 16 weeks of HFD feeding, BKO mice exhibited an exacerbated body weight gain and hyperphagia, in comparison to WT littermates. Glucose tolerance was similar in both groups, whereas HFD-induced hyperinsulinemia, insulin resistance, and ß-cell expansion were more pronounced in BKO mice. In turn, leptin-induced food intake inhibition and hypothalamic insulin signaling were impaired in BKO mice, regardless of the diet, in accordance with deregulation of the expression of hypothalamic neuropeptide genes. Importantly, BKO mice already showed increased ß-cell proliferation and glucose-stimulated insulin secretion with respect to WT littermates after two weeks of HFD feeding, before the onset of obesity. CONCLUSIONS: Collectively, these results reveal that BACE2 suppression in an obesogenic setting leads to exacerbated body weight gain, hyperinsulinemia, and insulin resistance. Thus, we conclude that inhibition of BACE2 may aggravate the adverse metabolic effects associated with obesity.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Obesity/metabolism , Animals , Diet/adverse effects , Male , Mice , Mice, Transgenic
6.
Diabetes ; 70(1): 240-254, 2021 01.
Article in English | MEDLINE | ID: mdl-33097483

ABSTRACT

Innovative biomarkers are needed to improve the management of patients with type 2 diabetes mellitus (T2DM). Blood circulating miRNAs have been proposed as a potential tool to detect T2DM complications, but the lack of tissue specificity, among other reasons, has hampered their translation to clinical settings. Extracellular vesicle (EV)-shuttled miRNAs have been proposed as an alternative approach. Here, we adapted an immunomagnetic bead-based method to isolate plasma CD31+ EVs to harvest vesicles deriving from tissues relevant for T2DM complications. Surface marker characterization showed that CD31+ EVs were also positive for a range of markers typical of both platelets and activated endothelial cells. After characterization, we quantified 11 candidate miRNAs associated with vascular performance and shuttled by CD31+ EVs in a large (n = 218) cross-sectional cohort of patients categorized as having T2DM without complications, having T2DM with complications, and control subjects. We found that 10 of the tested miRNAs are affected by T2DM, while the signature composed by miR-146a, -320a, -422a, and -451a efficiently identified T2DM patients with complications. Furthermore, another CD31+ EV-shuttled miRNA signature, i.e., miR-155, -320a, -342-3p, -376, and -422a, detected T2DM patients with a previous major adverse cardiovascular event. Many of these miRNAs significantly correlate with clinical variables held to play a key role in the development of complications. In addition, we show that CD31+ EVs from patients with T2DM are able to promote the expression of selected inflammatory mRNAs, i.e., CCL2, IL-1α, and TNFα, when administered to endothelial cells in vitro. Overall, these data suggest that the miRNA cargo of plasma CD31+ EVs is largely affected by T2DM and related complications, encouraging further research to explore the diagnostic potential and the functional role of these alterations.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/metabolism , Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , Cross-Sectional Studies , Endothelial Cells/metabolism , Female , Humans , Male , Middle Aged
7.
Proc Natl Acad Sci U S A ; 117(48): 30335-30343, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199621

ABSTRACT

Implementation of regular physical activity helps in the maintenance of a healthy metabolic profile both in humans and mice through molecular mechanisms not yet completely defined. Here, we show that high-intensity interval training (HIIT) modifies the microRNA (miRNA) profile of circulating exosomes in mice, including significant increases in miR-133a and miR-133b Importantly, treatment of sedentary mice with exosomes isolated from the plasma of trained mice improves glucose tolerance, insulin sensitivity, and decreases plasma levels of triglycerides. Moreover, exosomes isolated from the muscle of trained mice display similar changes in miRNA content, and their administration to sedentary mice reproduces the improvement of glucose tolerance. Exosomal miRNAs up-regulated by HIIT target insulin-regulated transcription factor forkhead box O1 (FoxO1) and, accordingly, expression of FoxO1 is decreased in the liver of trained and exosome-treated mice. Treatment with exosomes transfected with a miR-133b mimic or with a specific siRNA targeting FoxO1 recapitulates the metabolic effects observed in trained mice. Overall, our data suggest that circulating exosomes released by the muscle carry a specific miRNA signature that is modified by exercise and induce expression changes in the liver that impact whole-body metabolic profile.


Subject(s)
Down-Regulation/genetics , Exosomes/metabolism , Forkhead Box Protein O1/genetics , High-Intensity Interval Training , Insulin Resistance , Liver/metabolism , MicroRNAs/metabolism , Muscles/metabolism , Animals , Exosomes/ultrastructure , Forkhead Box Protein O1/metabolism , Gluconeogenesis , Glucose/metabolism , Lipid Metabolism , Male , Metabolomics , Mice, Inbred C57BL , MicroRNAs/genetics , Physical Conditioning, Animal
8.
Diabetes Metab Res Rev ; 35(3): e3107, 2019 03.
Article in English | MEDLINE | ID: mdl-30513130

ABSTRACT

Diabetes is a group of metabolic diseases characterized by elevated blood glucose levels that drive the development of life-threatening complications. Diabetes results from a situation of insufficient insulin action, either by deficient production of the hormone by the pancreas, or by the development of insulin resistance in peripheral tissues such as liver, muscle, or the adipose depots. Communication between organs is thus central to the maintenance of glucose homoeostasis. Recently, several studies are evidencing that small vesicles called exosomes released by, amongst other, the adipose tissue can regulate gene expression in other tissues, hence modulating interorgan crosstalk. Therefore, exosomes participate in the development of diabetes and its associated complications. Their study holds the potential of providing us with novel biomarkers for the early diagnosis and stratification of patients at risk of developing diabetes, hence allowing the timely implementation of more personalized therapies. On the other hand, the molecular dissection of the pathways initiated by exosomes under situations of metabolic stress could help to gain a deeper knowledge of the pathophysiology of diabetes and its associated metabolic diseases.


Subject(s)
Biomarkers/metabolism , Diabetes Mellitus/diagnosis , Diabetes Mellitus/therapy , Exosomes/metabolism , Animals , Diabetes Mellitus/metabolism , Humans
9.
Proc Natl Acad Sci U S A ; 115(48): 12158-12163, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429322

ABSTRACT

Obesity is frequently associated with metabolic disease. Here, we show that obesity changes the miRNA profile of plasma exosomes in mice, including increases in miR-122, miR-192, miR-27a-3p, and miR-27b-3p Importantly, treatment of lean mice with exosomes isolated from obese mice induces glucose intolerance and insulin resistance. Moreover, administration of control exosomes transfected with obesity-associated miRNA mimics strongly induces glucose intolerance in lean mice and results in central obesity and hepatic steatosis. Expression of the candidate target gene Ppara is decreased in white adipose tissue but not in the liver of mimic-treated (MIMIC) mice, and this is accompanied by increased circulating free fatty acids and hypertriglyceridemia. Treatment with a specific siRNA targeting Ppara transfected into exosomes recapitulates the phenotype induced by obesity-associated miRNAs. Importantly, simultaneously reducing free fatty acid plasma levels in MIMIC mice with either the lipolysis inhibitor acipimox or the PPARα agonist fenofibrate partially protects against these metabolic alterations. Overall, our data highlight the central role of obesity-associated exosomal miRNAs in the etiopathogeny of glucose intolerance and dyslipidemia.


Subject(s)
Exosomes/genetics , Glucose/metabolism , Lipid Metabolism , MicroRNAs/genetics , Obesity/genetics , Obesity/metabolism , Adipose Tissue, White/metabolism , Animals , Exosomes/metabolism , Fatty Acids, Nonesterified/blood , Glucose Intolerance , Humans , Insulin/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , MicroRNAs/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism
10.
FASEB J ; 31(12): 5296-5306, 2017 12.
Article in English | MEDLINE | ID: mdl-28821639

ABSTRACT

Human islet amyloid polypeptide (hIAPP) aggregation is associated with ß-cell dysfunction and death in type 2 diabetes (T2D). we aimed to determine whether in vivo treatment with chemical chaperone 4-phenylbutyrate (PBA) ameliorates hIAPP-induced ß-cell dysfunction and islet amyloid formation. Oral administration of PBA in hIAPP transgenic (hIAPP Tg) mice expressing hIAPP in pancreatic ß cells counteracted impaired glucose homeostasis and restored glucose-stimulated insulin secretion. Moreover, PBA treatment almost completely prevented the transcriptomic alterations observed in hIAPP Tg islets, including the induction of genes related to inflammation. PBA also increased ß-cell viability and improved insulin secretion in hIAPP Tg islets cultured under glucolipotoxic conditions. Strikingly, PBA not only prevented but even reversed islet amyloid deposition, pointing to a direct effect of PBA on hIAPP. This was supported by in silico calculations uncovering potential binding sites of PBA to monomeric, dimeric, and pentameric fibrillar structures, and by in vitro assays showing inhibition of hIAPP fibril formation by PBA. Collectively, these results uncover a novel beneficial effect of PBA on glucose homeostasis by restoring ß-cell function and preventing amyloid formation in mice expressing hIAPP in ß cells, highlighting the therapeutic potential of PBA for the treatment of T2D.-Montane, J., de Pablo, S., Castaño, C., Rodríguez-Comas, J., Cadavez, L., Obach, M., Visa, M., Alcarraz-Vizán, G., Sanchez-Martinez, M., Nonell-Canals, A., Parrizas, M., Servitja, J.-M., Novials, A. Amyloid-induced ß-cell dysfunction and islet inflammation are ameliorated by 4-phenylbutyrate (PBA) treatment.


Subject(s)
Amyloid/toxicity , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/metabolism , Phenylbutyrates/pharmacology , Animals , Glucose Tolerance Test , Humans , Immunohistochemistry , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/ultrastructure , Islet Amyloid Polypeptide/genetics , Islets of Langerhans/cytology , Male , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction
11.
Best Pract Res Clin Endocrinol Metab ; 30(5): 591-601, 2016 10.
Article in English | MEDLINE | ID: mdl-27923453

ABSTRACT

Incidence of diabetes and other metabolic disorders is increasing worldwide, with almost half the cases remaining undiagnosed. This is cause for concern as poor management of glucose or lipid levels causes tissue damage that may result in micro- or macrovascular complications. Current methods of diagnosing metabolic disorders do not provide any clues on disease aetiology or their posterior evolution and incidence of complications, which are the main cause of disease-associated morbidity. Circulating microRNAs found in blood change with the physiological condition of the organism and may help to: (1) identify people at risk of developing metabolic disease, (2) diagnose diabetes or other metabolic disorders on the basis of their aetiology, (3) predict the development of complications, and (4) monitor response to treatment. Results published to date show promise in this direction but technical issues must still be honed in order to warrant their application in the clinical practice.


Subject(s)
Metabolic Diseases/blood , MicroRNAs/blood , Biomarkers/blood , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
13.
PLoS One ; 11(7): e0159460, 2016.
Article in English | MEDLINE | ID: mdl-27441378

ABSTRACT

OBJECTIVE: Previous studies have confirmed Slug as a key player in regulating phenotypic changes in several cell models, however, its role in smooth muscle cells (SMC) has never been assessed. The purpose of this study was to evaluate the expression of Slug during the phenotypic switch of SMC in vitro and throughout the development of vascular remodeling. METHODS AND RESULTS: Slug expression was decreased during both cell-to-cell contact and TGFß1 induced SMC differentiation. Tumor necrosis factor-α (TNFα), a known inductor of a proliferative/dedifferentiated SMC phenotype, induces the expression of Slug in SMC. Slug knockdown blocked TNFα-induced SMC phenotypic change and significantly reduced both SMC proliferation and migration, while its overexpression blocked the TGFß1-induced SMC differentiation and induced proliferation and migration. Genome-wide transcriptomic analysis showed that in SMC, Slug knockdown induced changes mainly in genes related to proliferation and migration, indicating that Slug controls these processes in SMC. Notably, Slug expression was significantly up-regulated in lungs of mice using a model of pulmonary hypertension-related vascular remodeling. Highly remodeled human pulmonary arteries also showed an increase of Slug expression compared to less remodeled arteries. CONCLUSIONS: Slug emerges as a key transcription factor driving SMC towards a proliferative phenotype. The increased Slug expression observed in vivo in highly remodeled arteries of mice and human suggests a role of Slug in the pathogenesis of pulmonary vascular diseases.


Subject(s)
Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Snail Family Transcription Factors/metabolism , Vascular Remodeling , Animals , Cell Dedifferentiation/drug effects , Cell Dedifferentiation/genetics , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Disease Models, Animal , Female , Gene Expression Regulation/drug effects , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Models, Biological , Phenotype , Pulmonary Artery/pathology , Snail Family Transcription Factors/genetics , Transforming Growth Factor beta1/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Vascular Remodeling/drug effects , Vascular Remodeling/genetics
14.
Mol Cell Endocrinol ; 420: 57-65, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26607804

ABSTRACT

Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits in islets of type 2 diabetic patients. hIAPP misfolding and aggregation is one of the factors that may lead to ß-cell dysfunction and death. Endogenous chaperones are described to be important for the folding and functioning of proteins. Here, we examine the effect of the endoplasmic reticulum chaperone protein disulfide isomerase (PDI) on ß-cell dysfunction. Among other chaperones, PDI was found to interact with hIAPP in human islet lysates. Furthermore, intrinsically recovered PDI levels were able to restore the effect of high glucose- and palmitate-induced ß-cell dysfunction by increasing 3.9-fold the glucose-stimulated insulin secretion levels and restoring insulin content up to basal control values. Additionally, PDI transduction decreased induced apoptosis by glucolipotoxic conditions. This approach could reveal a new therapeutic target and aid in the development of strategies to improve ß-cell dysfunction in type 2 diabetic patients.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Islet Amyloid Polypeptide/metabolism , Protein Disulfide-Isomerases/metabolism , Amyloid/metabolism , Animals , Apoptosis/drug effects , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Mice, Transgenic , Molecular Chaperones/metabolism , Palmitic Acid/pharmacology , Protein Binding/drug effects , Tissue Extracts/metabolism , Transduction, Genetic
15.
J Clin Endocrinol Metab ; 100(3): E407-15, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25532038

ABSTRACT

CONTEXT: Diabetes is frequently diagnosed late, when the development of complications is almost inevitable, decreasing the quality of life of patients. However, early detection of affected individuals would allow the implementation of timely and effective therapies. OBJECTIVE: Here we set to describe the profile of circulating microRNAs (miRNAs) in prediabetic patients with the intention of identifying novel diagnostic and therapeutic tools. DESIGN: We used real-time RT-PCR to measure the abundance of 176 miRNAs in serum of a cohort of 92 control and prediabetic individuals with either impaired fasting glucose or impaired glucose tolerance, as well as newly diagnosed diabetic patients. We validated the results in a second cohort of control and prediabetic subjects undergoing a therapeutic exercise intervention, as well as in a mouse model of glucose intolerance. RESULTS: We identified two miRNAs, miR-192 and miR-193b, whose abundance is significantly increased in the prediabetic state but not in diabetic patients. Strikingly, these miRNAs are also increased in plasma of glucose-intolerant mice. Moreover, circulating levels of miR-192 and miR-193b return to baseline in both prediabetic humans and glucose-intolerant mice undergoing a therapeutic intervention consisting in chronic exercise, which succeeded in normalizing metabolic parameters. CONCLUSIONS: Our data show that the pattern of circulating miRNAs is modified by defects in glucose metabolism in a similar manner in mice and humans. This circulating miRNA signature for prediabetes could be used as a new diagnostic tool, as well as to monitor response to intervention.


Subject(s)
Biomarkers/blood , Exercise Therapy , MicroRNAs/blood , Prediabetic State/blood , Prediabetic State/therapy , Animals , Exercise/physiology , Female , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Prediabetic State/genetics , Transcriptome
16.
J Neuroinflammation ; 11: 126, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-25051986

ABSTRACT

BACKGROUND: Aging is characterized by a low-grade systemic inflammation that contributes to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD). However, little knowledge is currently available on the molecular processes leading to chronic neuroinflammation. In this context, recent studies have described the role of chromatin regulators in inflammation and longevity including the REST corepressor (Rcor)-2 factor, which seems to be involved in an inflammatory suppressive program. METHODS: To assess the impact of Rcor2 in age-related inflammation, gene expression levels were quantified in different tissues and ages of the spontaneous senescence-accelerated P8 mouse (P8) using the SAMR1 mouse (R1) as a control. Specific siRNA transfection in P8 and R1 astrocyte cultures was used to determine Rcor2 involvement in the modulation of neuroinflammation. The effect of lipopolysaccharide (LPS) treatment on Rcor2 levels and neuroinflammation was analyzed both in vivo and in vitro. RESULTS: P8 mice presented a dramatic decrease in Rcor2 gene expression compared with R1 controls in splenocytes, an alteration also observed in the brain cortex, hippocampus and primary astrocytes of these mice. Rcor2 reduction in astrocytes was accompanied by an increased basal expression of the interleukin (Il)-6 gene. Strikingly, intraperitoneal LPS injection in R1 mice downregulated Rcor2 in the hippocampus, with a concomitant upregulation of tumor necrosis factor (Tnf-α), Il1-ß and Il6 genes. A negative correlation between Rcor2 and Il6 gene expression was also verified in LPS-treated C6 glioma cells. Knock down of Rcor2 by siRNA transfection (siRcor2) in R1 astrocytes upregulated Il6 gene expression while siRcor2 further increased Il6 expression in P8 astrocytes. Moreover, LPS activation provoked a further downregulation of Rcor2 and an amplified induction of Il6 in siRcor2-tranfected astrocytes. CONCLUSIONS: Data presented here show interplay between Rcor2 downregulation and increased inflammation and suggest that Rcor2 may be a key regulator of inflammaging.


Subject(s)
Aging/genetics , Gene Expression Regulation/genetics , Nerve Tissue Proteins/metabolism , Repressor Proteins/metabolism , Analysis of Variance , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Brain/anatomy & histology , Brain/cytology , Brain/drug effects , Co-Repressor Proteins , Cytokines/blood , Cytokines/genetics , Cytokines/metabolism , Encephalitis/chemically induced , Encephalitis/pathology , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation/drug effects , Histones/metabolism , Interleukin-6/blood , Lipopolysaccharides/pharmacology , Male , Methylation/drug effects , Mice , Mice, Inbred Strains , Nerve Tissue Proteins/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Repressor Proteins/genetics
17.
PLoS One ; 9(6): e99310, 2014.
Article in English | MEDLINE | ID: mdl-24914535

ABSTRACT

TCF7L2 is the susceptibility gene for Type 2 diabetes (T2D) with the largest effect on disease risk that has been discovered to date. However, the mechanisms by which TCF7L2 contributes to the disease remain largely elusive. In addition, epigenetic mechanisms, such as changes in DNA methylation patterns, might have a role in the pathophysiology of T2D. This study aimed to investigate the differences in terms of DNA methylation profile of TCF7L2 promoter gene between type 2 diabetic patients and age- and Body Mass Index (BMI)- matched controls. We included 93 type 2 diabetic patients that were recently diagnosed for T2D and exclusively on diet (without any pharmacological treatment). DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Type 2 diabetic patients were more insulin resistant than their matched controls (mean HOMA IR 2.6 vs 1.8 in controls, P<0.001) and had a poorer beta-cell function (mean HOMA B 75.7 vs. 113.6 in controls, P<0.001). Results showed that 59% of the CpGs analyzed in TCF7L2 promoter had significant differences between type 2 diabetic patients and matched controls. In addition, fasting glucose, HOMA-B, HOMA-IR, total cholesterol and LDL-cholesterol correlated with methylation in specific CpG sites of TCF7L2 promoter. After adjustment by age, BMI, gender, physical inactivity, waist circumference, smoking status and diabetes status uniquely fasting glucose, total cholesterol and LDL-cholesterol remained significant. Taken together, newly diagnosed, drug-naïve type 2 diabetic patients display specific epigenetic changes at the TCF7L2 promoter as compared to age- and BMI-matched controls. Methylation in TCF7L2 promoter is further correlated with fasting glucose in peripheral blood DNA, which sheds new light on the role of epigenetic regulation of TCF7L2 in T2D.


Subject(s)
DNA Methylation/genetics , DNA/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Promoter Regions, Genetic , Transcription Factor 7-Like 2 Protein/genetics , Aged , Case-Control Studies , CpG Islands/genetics , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Metabolomics
18.
PLoS One ; 8(9): e75474, 2013.
Article in English | MEDLINE | ID: mdl-24086540

ABSTRACT

GIP action in type 2 diabetic (T2D) patients is altered. We hypothesized that methylation changes could be present in GIP receptor of T2D patients. This study aimed to assess the differences in DNA methylation profile of GIPR promoter between T2D patients and age- and Body Mass Index (BMI)-matched controls. We included 93 T2D patients (cases) that were uniquely on diet (without any anti-diabetic pharmacological treatment). We matched one control (with oral glucose tolerance test negative, non diabetic), by age and BMI, for every case. Cytokines and hormones were determined by ELISA. DNA was extracted from whole blood and DNA methylation was assessed using the Sequenom EpiTYPER system. Our results showed that T2D patients were more insulin resistant and had a poorer ß cell function than their controls. Fasting adiponectin was lower in T2D patients as compared to controls (7.0±3.8 µgr/mL vs. 10.0±4.2 µgr/mL). Levels of IL 12 in serum were almost double in T2D patients (52.8±58.3 pg/mL vs. 29.7±37.4 pg/mL). We found that GIPR promoter was hypomethylated in T2D patients as compared to controls. In addition, HOMA-IR and fasting glucose correlated negatively with mean methylation of GIPR promoter, especially in T2D patients. This case-control study confirms that newly diagnosed, drug-naïve T2D patients are more insulin resistant and have worse ß cell function than age- and BMI-matched controls, which is partly related to changes in the insulin-sensitizing metabolites (adiponectin), in the proinflammatory profile (IL12) and we suggest in the methylation pattern of GIPR. Our study provides novel findings on GIPR promoter methylation profile which may improve our ability to understand type 2 diabetes pathogenesis.


Subject(s)
DNA Methylation/genetics , Diabetes Mellitus, Type 2/metabolism , Promoter Regions, Genetic/genetics , Receptors, Gastrointestinal Hormone/metabolism , Adiponectin/blood , Age Factors , Body Mass Index , Case-Control Studies , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Humans , Insulin Resistance/genetics , Interleukin-12/blood , Receptors, Gastrointestinal Hormone/genetics
19.
J Biol Chem ; 288(39): 28230-42, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-23943621

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor and a master regulator of adipogenesis. Microsomal prostaglandin E (PGE) synthase-1 (mPGES-1) is an inducible enzyme that couples with cyclooxygenase-2 for the biosynthesis of PGE2. In this study we demonstrate the existence of a coordinate functional interaction between PPARγ and mPGES-1 in controlling the process of pre-adipocyte differentiation in white adipose tissue (WAT). Adipocyte-specific PPARγ knock-out mice carrying an aP2 promoter-driven Cre recombinase transgene showed a blunted response to the adipogenic effects of a high fat diet. Pre-adipocytes from these knock-out mice showed loss of PPARγ and were resistant to rosiglitazone-induced WAT differentiation. In parallel, WAT from these mice showed increased expression of uncoupling protein 1, a mitochondrial enzyme that dissipates chemical energy as heat. Adipose tissue from mice lacking PPARγ also showed mPGES-1 up-regulation and increased PGE2 levels. In turn, PGE2 suppressed PPARγ expression and blocked rosiglitazone-induced pre-adipocyte differentiation toward white adipocytes while directly elevating uncoupling protein 1 expression and pre-adipocyte differentiation into mature beige/brite adipocytes. Consistently, pharmacological mPGES-1 inhibition directed pre-adipocyte differentiation toward white adipocytes while suppressing differentiation into beige/brite adipocytes. This browning effect was reproduced in knockdown experiments using a siRNA directed against mPGES-1. The effects of PGE2 on pre-adipocyte differentiation were not seen in mice lacking PPARγ in adipose tissue and were not mirrored by other eicosanoids (i.e. leukotriene B4). Taken together, these findings identify PGE2 as a key regulator of white-to-brown adipogenesis and suggest the existence of a coordinate regulation of adipogenesis between PPARγ and mPGES-1.


Subject(s)
Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Gene Expression Regulation, Enzymologic , Intramolecular Oxidoreductases/metabolism , Microsomes/enzymology , PPAR gamma/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipogenesis , Adipose Tissue/enzymology , Animals , Cell Differentiation , Eicosanoids/metabolism , Female , Homeostasis , Inflammation/metabolism , Male , Mice , Obesity/metabolism , Prostaglandin-E Synthases , Prostaglandins/metabolism , Protein Binding , Protein Isoforms/metabolism
20.
Obesity (Silver Spring) ; 21(12): E616-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23595969

ABSTRACT

OBJECTIVE: Persistent inflammation and impaired adipogenesis are frequent features of obesity and underlie the development of its complications. However, the factors behind adipose tissue dysfunction are not completely understood. Previously it was shown that histone demethylase KDM1A is required for adipogenesis. DESIGN AND METHODS: Kdm1a expression was knocked down in 3T3-L1 preadipocytes by siRNA transfection and whole-genome expression profiling was performed by microarray hybridization. The role of NF-κß and C/EBPß was analyzed by incubation with the inhibitor parthenolide and by cebpb knockdown, respectively. RESULTS: Knockdown of kdm1a or rcor2 in 3T3-L1 preadipocytes results in impaired differentiation and induction of inflammatory gene expression. Enhanced expression of il6 in kdm1a knocked down preadipocytes is associated with increased recruitment of C/EBPß and the NF-κß subunit RelA to the il6 promoter. Cebpb knockdown attenuates the induction of il6 expression in kdm1a knocked down cells, whereas simultaneous cebpb knockdown and NF-κß inhibition abrogates it. Dietary-induced and genetic mouse models of obesity display decreased KDM1A in adipose tissue, and this correlates with increased expression of proinflammatory genes and C/EBPß. CONCLUSION: KDM1A represses the expression of inflammatory genes in preadipocytes. Dysregulated kdm1a expression in preadipocytes may thus participate in the development of obesity-associated inflammation.


Subject(s)
Adipocytes/metabolism , Gene Expression Regulation , Histone Demethylases/metabolism , Oxidoreductases, N-Demethylating/metabolism , 3T3-L1 Cells , Adipogenesis/physiology , Adipose Tissue/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Differentiation , Cell Line , Co-Repressor Proteins , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Knockdown Techniques , Histone Demethylases/genetics , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , NF-kappa B/genetics , NF-kappa B/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oxidoreductases, N-Demethylating/genetics , Promoter Regions, Genetic , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...