Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mol Cell Biochem ; 430(1-2): 57-68, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28213770

ABSTRACT

This study aimed to explore the potential contribution of myofibrils to contractile dysfunction in Ca2+-paradox hearts. Isolated rat hearts were perfused with Krebs-Henseleit solution (Control), followed by Ca2+-depletion, and then Ca2+-repletion after Ca2+-depletion (Ca2+-paradox) by Langendorff method. During heart perfusion left ventricular developed pressure (LVDP), end-diastolic pressure (LVEDP), rate of pressure development (+ dP/dt), and pressure decay (-dP/dt) were registered. Control LVDP (127.4 ± 6.1 mmHg) was reduced during Ca2+-depletion (9.8 ± 1.3 mmHg) and Ca2+-paradox (12.9 ± 1.3 mmHg) with similar decline in +dP/dt and -dP/dt. LVEDP was increased in both Ca2+-depletion and Ca2+-paradox. Compared to Control, myofibrillar Ca2+-stimulated ATPase activity was decreased in the Ca2+-depletion group (12.08 ± 0.57 vs. 8.13 ± 0.19 µmol Pi/mg protein/h), besides unvarying Mg2+ ATPase activity, while upon Ca2+-paradox myofibrillar Ca2+-stimulated ATPase activity was decreased (12.08 ± 0.57 vs. 8.40 ± 0.22 µmol Pi/mg protein/h), but Mg2+ ATPase activity was increased (3.20 ± 0.25 vs. 7.21 ± 0.36 µmol Pi/mg protein/h). In force measurements of isolated cardiomyocytes at saturating [Ca2+], Ca2+-depleted cells had lower rate constant of force redevelopment (k tr,max, 3.85 ± 0.21) and unchanged active tension, while those in Ca2+-paradox produced lower active tension (12.12 ± 3.19 kN/m2) and k tr,max (3.21 ± 23) than cells of Control group (25.07 ± 3.51 and 4.61 ± 22 kN/m2, respectively). In biochemical assays, α-myosin heavy chain and cardiac troponin T presented progressive degradation during Ca2+-depletion and Ca2+-paradox. Our results suggest that contractile impairment in Ca2+-paradox partially resides in deranged sarcomeric function and compromised myofibrillar ATPase activity as a result of myofilament protein degradation, such as α-myosin heavy chain and cardiac troponin T. Impaired relaxation seen in Ca2+-paradoxical hearts is apparently not related to titin, rather explained by the altered myofibrillar ATPase activity.


Subject(s)
Calcium/metabolism , Myocardial Contraction , Myocardium/metabolism , Myosin Heavy Chains/metabolism , Sarcomeres/metabolism , Troponin T/metabolism , Animals , Male , Myocardium/pathology , Rats , Rats, Sprague-Dawley , Sarcomeres/pathology
2.
Free Radic Biol Med ; 89: 248-62, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26409224

ABSTRACT

Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury.


Subject(s)
Heart Ventricles/pathology , Heme/pharmacology , Myocardial Contraction/drug effects , Myocytes, Cardiac/pathology , Myosin-Light-Chain Kinase/metabolism , Actin Cytoskeleton , Actinin/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Carrier Proteins/metabolism , Cells, Cultured , Filamins/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Humans , Immunoblotting , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidants/pharmacology , Protein Processing, Post-Translational , Protozoan Proteins/metabolism
3.
Free Radic Biol Med ; 84: 116-127, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25770662

ABSTRACT

We set out to characterize the mechanical effects of myeloperoxidase (MPO) in isolated left-ventricular human cardiomyocytes. Oxidative myofilament protein modifications (sulfhydryl (SH)-group oxidation and carbonylation) induced by the peroxidase and chlorinating activities of MPO were additionally identified. The specificity of the MPO-evoked functional alterations was tested with an MPO inhibitor (MPO-I) and the antioxidant amino acid Met. The combined application of MPO and its substrate, hydrogen peroxide (H2O2), largely reduced the active force (Factive), increased the passive force (Fpassive), and decreased the Ca(2+) sensitivity of force production (pCa50) in permeabilized cardiomyocytes. H2O2 alone had significantly smaller effects on Factive and Fpassive and did not alter pCa50. The MPO-I blocked both the peroxidase and the chlorinating activities, whereas Met selectively inhibited the chlorinating activity of MPO. All of the MPO-induced functional effects could be prevented by the MPO-I and Met. Both H2O2 alone and MPO + H2O2 reduced the SH content of actin and increased the carbonylation of actin and myosin-binding protein C to the same extent. Neither the SH oxidation nor the carbonylation of the giant sarcomeric protein titin was affected by these treatments. MPO activation induces a cardiomyocyte dysfunction by affecting Ca(2+)-regulated active and Ca(2+)-independent passive force production and myofilament Ca(2+) sensitivity, independent of protein SH oxidation and carbonylation. The MPO-induced deleterious functional alterations can be prevented by the MPO-I and Met. Inhibition of MPO may be a promising therapeutic target to limit myocardial contractile dysfunction during inflammation.


Subject(s)
Myocytes, Cardiac/enzymology , Peroxidase/physiology , Adult , Calcium Signaling , Cells, Cultured , Female , Humans , Male , Middle Aged , Myocardial Contraction
4.
J Histochem Cytochem ; 62(2): 129-44, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24217926

ABSTRACT

Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1.


Subject(s)
Muscle, Smooth, Vascular/metabolism , TRPV Cation Channels/metabolism , Animals , Arteries/metabolism , Capsaicin/pharmacology , Ganglia, Spinal/blood supply , Male , Mesentery/blood supply , Muscle Contraction/drug effects , Muscle, Skeletal/blood supply , Nerve Tissue/blood supply , Organ Specificity , Rats , Rats, Inbred WKY , Skin/blood supply , Spinal Cord/blood supply , TRPV Cation Channels/agonists , Veins/metabolism
5.
Cardiovasc Res ; 101(1): 108-19, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24127233

ABSTRACT

AIMS: The region-specific mechanical function of left ventricular (LV) murine cardiomyocytes and the role of phosphorylation and oxidative modifications of myofilament proteins were investigated in the process of post-myocardial infarction (MI) remodelling 10 weeks after ligation of the left anterior descending (LAD) coronary artery. METHODS AND RESULTS: Permeabilized murine cardiomyocytes from the remaining anterior and a remote non-infarcted inferior LV area were compared with those of non-infarcted age-matched controls. Myofilament phosphorylation, sulfhydryl (SH) oxidation, and carbonylation were also assayed. Ca(2+) sensitivity of force production was significantly lower in the anterior wall (pCa50: 5.81 ± 0.03, means ± SEM, at 2.3 µm sarcomere length) than that in the controls (pCa50: 5.91 ± 0.02) or in the MI inferior area (pCa50: 5.88 ± 0.02). The level of troponin I phosphorylation was lower and that of myofilament protein SH oxidation was higher in the anterior location relative to controls, but these changes did not explain the differences in Ca(2+) sensitivities. On the other hand, significantly higher carbonylation levels, [e.g. in myosin heavy chain (MHC) and actin] were observed in the MI anterior wall [carbonylation index (CI), CIMHC: 2.06 ± 0.46, CIactin: 1.46 ± 0.18] than in the controls (CI: 1). In vitro Fenton-based myofilament carbonylation in the control cardiomyocytes also decreased the Ca(2+) sensitivity of force production irrespective of the phosphorylation status of the myofilaments. Furthermore, the Ca(2+) sensitivity correlated strongly with myofilament carbonylation levels in all investigated samples. CONCLUSION: Post-MI myocardial remodelling involves increased myofibrillar protein carbonylation and decreased Ca(2+) sensitivity of force production, leading potentially to contractile dysfunction in the remaining cardiomyocytes of the infarcted area.


Subject(s)
Muscle Proteins/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/physiology , Ventricular Remodeling , Animals , Calcium/metabolism , Disease Models, Animal , Female , Mice , Myocardial Infarction/physiopathology , Protein Carbonylation , Troponin I/metabolism , Ventricular Function, Left
6.
PLoS One ; 8(11): e78184, 2013.
Article in English | MEDLINE | ID: mdl-24250792

ABSTRACT

BACKGROUND AND PURPOSE: TRPV1 is expressed in sensory neurons and vascular smooth muscle cells, contributing to both pain perception and tissue blood distribution. Local desensitization of TRPV1 in sensory neurons by prolonged, high dose stimulation is re-engaged in clinical practice to achieve analgesia, but the effects of such treatments on the vascular TRPV1 are not known. EXPERIMENTAL APPROACH: Newborn rats were injected with capsaicin for five days. Sensory activation was measured by eye wiping tests and plasma extravasation. Isolated, pressurized skeletal muscle arterioles were used to characterize TRPV1 mediated vascular responses, while expression of TRPV1 was detected by immunohistochemistry. KEY RESULTS: Capsaicin evoked sensory responses, such as eye wiping (3.6±2.5 versus 15.5±1.4 wipes, p<0.01) or plasma extravasation (evans blue accumulation 10±3 versus 33±7 µg/g, p<0.05) were reduced in desensitized rats. In accordance, the number of TRPV1 positive sensory neurons in the dorsal root ganglia was also decreased. However, TRPV1 expression in smooth muscle cells was not affected by the treatment. There were no differences in the diameter (192±27 versus 194±8 µm), endothelium mediated dilations (evoked by acetylcholine), norepinephrine mediated constrictions, myogenic response and in the capsaicin evoked constrictions of arterioles isolated from skeletal muscle. CONCLUSION AND IMPLICATIONS: Systemic capsaicin treatment of juvenile rats evokes anatomical and functional disappearance of the TRPV1-expressing neuronal cells but does not affect the TRPV1-expressing cells of the arterioles, implicating different effects of TRPV1 stimulation on the viability of these cell types.


Subject(s)
Ganglia, Spinal/metabolism , Muscle, Skeletal/drug effects , Sensory Receptor Cells/drug effects , TRPV Cation Channels/metabolism , Animals , Arterioles/drug effects , Arterioles/physiology , Capsaicin/administration & dosage , Ganglia, Spinal/physiology , Male , Muscle, Skeletal/physiology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Rats , Sensory Receptor Cells/physiology , TRPV Cation Channels/biosynthesis
7.
Basic Res Cardiol ; 107(2): 244, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22237651

ABSTRACT

We tested the hypothesis that myocardial contractile protein phosphorylation and the Ca(2+) sensitivity of force production are dysregulated in a porcine model of pacing-induced heart failure (HF). The level of protein kinase A (PKA)-dependent cardiac troponin I (TnI) phosphorylation was lower in the myocardium surrounding the pacing electrode (pacing site) of the failing left ventricle (LV) than in the controls. Immunohistochemical assays of the LV pacing site pointed to isolated clusters of cardiomyocytes exhibiting a reduced level of phosphorylated TnI. Flow cytometry on isolated and permeabilized cardiomyocytes revealed a significantly larger cell-to-cell variation in the level of TnI phosphorylation of the LV pacing site than in the opposite region in HF or in either region in the controls: the interquartile range (IQR) on the distribution histogram of relative TnI phosphorylation was wider at the pacing site (IQR = 0.53) than that at the remote site of HF (IQR = 0.42; P = 0.0047) or that of the free wall of the control animals (IQR = 0.36; P = 0.0093). Additionally, the Ca(2+) sensitivities of isometric force production were higher and appeared to be more variable in single permeabilized cardiomyocytes from the HF pacing site than in the healthy myocardium. In conclusion, the level of PKA-dependent TnI phosphorylation and the Ca(2+) sensitivity of force production exhibited a high cell-to-cell variability at the LV pacing site, possibly explaining the abnormalities of the regional myocardial contractile function in a porcine model of pacing-induced HF.


Subject(s)
Heart Failure/metabolism , Myofibrils/metabolism , Troponin I/metabolism , Animals , Blotting, Western , Cardiac Pacing, Artificial , Cell Separation , Disease Models, Animal , Flow Cytometry , Immunohistochemistry , Male , Phosphorylation , Swine
8.
J Biol Chem ; 284(2): 1031-9, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-18854307

ABSTRACT

Prolonged Ca(2+) stimulations often result in a decrease in contractile force of isolated, demembranated human ventricular cardiomyocytes, whereas intact cells are likely to be protected from this deterioration. We hypothesized that cytosolic protein kinase C (PKC) contributes to this protection. Prolonged contracture (10 min) of demembranated human cardiomyocytes at half-maximal Ca(2+) resulted in a 37 +/- 5% reduction of active force (p < 0.01), whereas no decrease (2 +/- 3% increase) was observed in the presence of the cytosol (reconstituted myocytes). The PKC inhibitors GF 109203X and Gö 6976 (10 micromol/liter) partially antagonized the cytosol-mediated protection (15 +/- 5 and 9 +/- 2% decrease in active force, p < 0.05). Quantitation of PKC isoform expression revealed the dominance of the Ca(2+)-dependent PKCalpha over PKCdelta and PKCepsilon (189 +/- 31, 7 +/- 3, and 7 +/- 2 ng/mg protein, respectively). Ca(2+) stimulations of reconstituted human cardiomyocytes resulted in the translocation of endogenous PKCalpha, but not PKCbeta1, delta, and epsilon from the cytosol to the contractile system (PKCalpha association: control, 5 +/- 3 arbitrary units; +Ca(2+), 39 +/- 8 arbitrary units; p < 0.01, EC(50,Ca) = 645 nmol/liter). One of the PKCalpha-binding proteins were identified as the thin filament regulatory protein cardiac troponin I (TnI). Finally, the Ca(2+)-dependent interaction between PKCalpha and TnI was confirmed using purified recombinant proteins (binding without Ca(2+) was only 28 +/- 18% of that with Ca(2+)). Our data suggest that PKCalpha translocates to the contractile system and anchors to TnI in a Ca(2+)-dependent manner in the human heart, contributing to the maintenance of contractile force.


Subject(s)
Heart Ventricles/enzymology , Muscle Contraction , Myocytes, Cardiac/enzymology , Protein Kinase C/metabolism , Adult , Calcium/pharmacology , Cytosol/drug effects , Cytosol/enzymology , Enzyme Activation/drug effects , Female , Heart Ventricles/drug effects , Humans , Isoenzymes/metabolism , Male , Myocytes, Cardiac/drug effects , Protein Binding , Substrate Specificity , Troponin I/metabolism
9.
Am J Physiol Heart Circ Physiol ; 294(6): H2558-64, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18408126

ABSTRACT

The impact of obesity on nitric oxide (NO)-mediated coronary microvascular responses is poorly understood. Thus NO-mediated vasomotor responses were investigated in pressurized coronary arterioles ( approximately 100 microm) isolated from lean (on normal diet) and obese (fed with 60% of saturated fat) rats. We found that dilations to acetylcholine (ACh) were not significantly different in obese and lean rats (lean, 83 +/- 4%; and obese, 85 +/- 3% at 1 microM), yet the inhibition of NO synthesis with N(omega)-nitro-l-arginine methyl ester reduced ACh-induced dilations only in vessels of lean controls. The presence of the soluble guanylate cyclase (sGC) inhibitor oxadiazolo-quinoxaline (ODQ) elicited a similar reduction in ACh-induced dilations in the two groups of vessels (lean, 60 +/- 11%; and obese, 57 +/- 3%). Dilations to NO donors, sodium nitroprusside (SNP), and diethylenetriamine (DETA)-NONOate were enhanced in coronary arterioles of obese compared with lean control rats (lean, 63 +/- 6% and 51 +/- 5%; and obese, 78 +/- 5% and 70 +/- 5%, respectively, at 1 microM), whereas dilations to 8-bromo-cGMP were not different in the two groups. In the presence of ODQ, both SNP and DETA-NONOate-induced dilations were reduced to a similar level in lean and obese rats. Moreover, SNP-stimulated cGMP immunoreactivity in coronary arterioles and also cGMP levels in carotid arteries were enhanced in obese rats, whereas the protein expression of endothelial NOS and the sGC beta1-subunit were not different in the two groups. Collectively, these findings suggest that in coronary arterioles of obese rats, the increased activity of sGC leads to an enhanced sensitivity to NO, which may contribute to the maintenance of NO-mediated dilations and coronary perfusion in obesity.


Subject(s)
Coronary Vessels/metabolism , Dietary Fats/administration & dosage , Guanylate Cyclase/metabolism , Nitric Oxide/metabolism , Obesity/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Vasodilation/drug effects , Acetylcholine/pharmacology , Adaptation, Physiological , Animals , Arterioles/metabolism , Arterioles/physiopathology , Blotting, Western , Coronary Vessels/drug effects , Coronary Vessels/enzymology , Coronary Vessels/physiopathology , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Cyclic GMP/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Activation , Enzyme Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , Guanylate Cyclase/antagonists & inhibitors , Immunohistochemistry , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III , Nitroprusside/pharmacology , Nitroso Compounds/pharmacology , Obesity/chemically induced , Obesity/physiopathology , Rats , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Soluble Guanylyl Cyclase , Vasodilator Agents/pharmacology
10.
Mol Pharmacol ; 73(5): 1405-12, 2008 May.
Article in English | MEDLINE | ID: mdl-18256211

ABSTRACT

The transient receptor potential type V1 channel (vanilloid receptor 1, TRPV1) is a Ca(2+)-permeable nonspecific cation channel activated by various painful stimuli including ischemia. We hypothesized that TRPV1 is expressed in the arterioles and is involved in the regulation of microvascular tone. We found that TRPV1 stimulation by capsaicin (intra-arterial administration) of the isolated, perfused right hind limb of the rat increased vascular resistance (by 98 +/- 21 mm Hg at 10 mug) in association with decreased skeletal muscle perfusion and elevation of skin perfusion (detected by dual-channel laser Doppler flowmetry). Denervation of the hind limb did not affect capsaicin-evoked changes in vascular resistance and tissue perfusion in the hind limb but reduced the elevation of perfusion in the skin. In isolated, pressurized skeletal (musculus gracilis) muscle arterioles (diameter, 147 +/- 35 mum), capsaicin had biphasic effects: at lower concentrations, capsaicin (up to 10 nM) evoked dilations (maximum, 32 +/- 13%), whereas higher concentrations (0.1-1 muM) elicited substantial constrictions (maximum, 66 +/- 7%). Endothelium removal or inhibition of nitric-oxide synthase abolished capsaicin-induced dilations but did not affect arteriolar constriction. Expression of TRPV1 was detected by reverse transcriptase-polymerase chain reaction in the aorta and in cultured rat aortic vascular smooth muscle cells (A7r5). Immunohistochemistry revealed expression primarily in the smooth muscle layers of the gracilis arteriole. These data demonstrate the functional expression of TRPV1 in vascular smooth muscle cells mediating vasoconstriction of the resistance arteries. Because of the dual effects of TRPV1 stimulation on the arteriolar diameter (dilation in skin, constriction in skeletal muscle), we propose that TRPV1 ligands represent drug candidates for tissue-specific modulation of blood distribution.


Subject(s)
Muscle, Smooth/blood supply , Muscle, Smooth/metabolism , Neurons/metabolism , TRPV Cation Channels/metabolism , Animals , Arterioles/metabolism , Gene Expression Regulation , Hindlimb/blood supply , Hindlimb/innervation , In Vitro Techniques , Ion Channel Gating , Male , Models, Biological , Muscle Denervation , Muscle, Skeletal/cytology , Muscle, Skeletal/innervation , Muscle, Smooth/innervation , Organ Specificity , Perfusion , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Skin/cytology , Skin/innervation , TRPV Cation Channels/genetics
11.
Circ Res ; 99(5): e12-7, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16917094

ABSTRACT

Based on findings of experimental models of diabetes mellitus (DM) showing increased expression of vascular cyclooxygenase-2 (COX-2), we hypothesized that in patients with DM changes in COX-2-dependent prostaglandin synthesis affect vasomotor responses of coronary arterioles. Arterioles were dissected from the right atrial appendages obtained at the time of cardiac surgery of patient with DM(+) or without documented diabetes DM(-). Isolated arterioles (89+/-15 microm in diameter) were cannulated and pressurized (at 80 mm Hg), and changes in diameter were measured with video microscopy. After spontaneous tone developed [DM(-): 32+/-7%; DM(+): 37+/-5%; P=NS], arteriolar responses to bradykinin were investigated. Dilations to bradykinin (0.1 nmol/L to 1 micromol/L) were significantly (P<0.05) greater in DM(+) than DM(-) patients (10 nmol/L: 77+/-10% versus 38+/-14%). In both groups, dilations were similar to the NO-donor, sodium nitroprusside. In arterioles of DM(+), but not those of DM(-), patients' bradykinin-induced dilations were reduced by the nonselective COX inhibitor indomethacin or by the selective COX-2 inhibitor NS-398 (DM(+) at 10 nmol/L: to 20+/-4% and 29+/-7%, respectively). Correspondingly, a marked COX-2 immunostaining was detected in coronary arterioles of DM(+), but not in those of DM(-) patients. We conclude that in coronary arterioles of diabetic patients bradykinin induces enhanced COX-2-derived prostaglandin-mediated dilation. These findings are the first to show that in humans diabetes mellitus increases COX-2 expression and dilator prostaglandin synthesis in coronary arterioles, which may serve to increase dilator capacity and maintain adequate perfusion of cardiac tissues.


Subject(s)
Coronary Vessels/physiopathology , Cyclooxygenase 2/metabolism , Diabetes Mellitus/physiopathology , Prostaglandins/metabolism , Vasodilation , Aged , Arterioles/drug effects , Arterioles/metabolism , Arterioles/physiopathology , Bradykinin/pharmacology , Case-Control Studies , Coronary Vessels/drug effects , Diabetes Mellitus/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged , Vasomotor System/physiopathology
12.
Hypertens Res ; 29(3): 197-201, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16755155

ABSTRACT

Conflicting results are to be found in the literature on the relationship between the M235T polymorphism of the angiotensinogen (AGT) gene and hypertension. The controversy may be due to insufficient numbers of subjects, the variability of the inclusion criteria and the different genotype analysis methods used. We have experienced that the most frequently used, original polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method involves significant uncertainties when the TT genotype is determined, independently of the restriction digestion. To make the determination more accurate, we improved the PCR by designing a new antisense primer containing only one mismatch instead of the two in the original protocol and also by adding DMSO to the PCR reaction mixture. The original and our improved methods were compared by using DNA from 123 patients: parallel determinations resulted in values of 33 MM, 90 MT and 0 TT with the original method and of 33 MM, 56 MT and 34 TT with the improved RFLP protocol. In summary, a plausible explanation for some of the conflicting data published on AGT M235T polymorphism may be that inaccuracies arose during the determination of the genotype.


Subject(s)
Angiotensinogen/genetics , Gene Frequency , Polymerase Chain Reaction/methods , Genotype , Humans , Hypertension/genetics , Methionine , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Threonine
13.
Am J Physiol Heart Circ Physiol ; 291(5): H2107-15, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16798827

ABSTRACT

Obesity frequently leads to the development of hypertension. We hypothesized that high-fat diet (HFD)-induced obesity impairs the endothelium-dependent dilation of arterioles. Male Wistar rats were fed with normal (control) or HFD (60% of saturated fat, for 10 wk). In rats with HFD, body weight, mean arterial blood pressure, and serum insulin, cholesterol, and glucose were elevated. In isolated gracilis muscle arterioles (diameter: approximately 160 microm) of HFD, rat dilations to ACh (at 1 microM, maximum: 83 +/- 3%) and histamine (at 10 microM, maximum: 16 +/- 4%) were significantly (P < 0.05) decreased compared with those of control responses (maximum: 90 +/- 2 and 46 +/- 4%, respectively). Dilations to the NO donor sodium nitroprusside were similar in the two groups. Inhibition of NO synthesis by N(omega)-nitro-l-arginine methyl ester reduced ACh- and histamine-induced dilations in control arterioles but had no effect on microvessels of HFD rats. The superoxide dismutase mimetic Tiron or xanthine oxidase inhibitor allopurinol enhanced ACh (maximum: 90 +/- 2 and 93 +/- 2%, respectively)- and histamine (maximum: 30 +/- 7 and 37 +/- 8%, respectively)-induced dilations in HFD arterioles, whereas the NAD(P)H oxidase inhibitor apocynin had no significant effect. Correspondingly, in carotid arteries of HFD rats, an enhanced superoxide production was shown by lucigenin-enhanced chemiluminescence, in association with an increased xanthine oxidase, but not NAD(P)H oxidase activity. In addition, a marked xanthine oxidase immunostaining was detected in the endothelial layer of the gracilis arterioles of HFD, but not in control rats. These findings suggest that, in obese rats, NO mediation of endothelium-dependent dilation of skeletal muscle arterioles is reduced because of an enhanced xanthine oxidase-derived superoxide production. These alterations demonstrate substantial dysregulation of arteriolar tone by the endothelium in HFD-induced obesity, which may contribute to disturbed tissue blood flow and development of increased peripheral resistance.


Subject(s)
Arterioles/metabolism , Dietary Fats/administration & dosage , Nitric Oxide/physiology , Superoxides/metabolism , Vasodilation/physiology , Xanthine Oxidase/metabolism , Acetylcholine/pharmacology , Animals , Arterioles/drug effects , Arterioles/physiology , Blood Glucose/analysis , Blood Pressure/drug effects , Body Weight/drug effects , Cholesterol/blood , Dietary Fats/pharmacology , Dose-Response Relationship, Drug , Insulin/blood , Male , Muscle, Skeletal/blood supply , Rats , Rats, Wistar , Vasodilation/drug effects
14.
Mol Pharmacol ; 69(3): 1015-23, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16338989

ABSTRACT

It has been proposed that activation of vanilloid receptor-1 (TRPV1) affects the vasotone of resistance arteries. One of the endogenous activators of TRPV1 is anandamide. The effects of anandamide on TRPV1 responsiveness were tested on isolated, pressurized (80 mm Hg) skeletal muscle (m. gracilis) arterioles (179 +/- 33 microm in diameter). We found that the TRPV1 agonist capsaicin (1 microM) elicited a substantial constriction in isolated arterioles (51 +/- 12%). In contrast, anandamide (0-100 microM) did not affect arteriolar diameter significantly (3 +/- 5%). Isolated vessels were also preincubated with anandamide (30 microM for 20 min). This anandamide pretreatment completely blocked capsaicin-induced arteriolar constriction (response decreased to 1 +/- 0.6%), and this inhibition was reversed by a protein phosphatase-2B inhibitor (cyclosporin-A; 100 nM, 5 min) treatment (constriction, 31 +/- 1%). An exogenous TRPV1-expressing cell line [Chinese hamster ovary (CHO)-TRPV1] was used to specifically evaluate TRPV1-mediated effects of anandamide. The efficacy of anandamide in this system, as determined by 45Ca2+ uptake, was 65 +/- 8% of that of capsaicin. Upon treatment of the cells with cyclosporin-A or the protein kinase C activator phorbol 12-myristate 13-acetate (PMA), anandamide was transformed to a full agonist. Anandamide treatment caused an acute desensitization in these cells as measured by intracellular Ca2+ imaging. Application of cyclosporin-A or PMA reversed this desensitization. Our data suggest that anandamide may cause a complete (albeit phosphorylation-dependent) desensitization of TRPV1 in skeletal muscle arterioles and in CHO-TRPV1 cells, which apparently transforms the ligand-gated TRPV1 into a phosphorylation-gated channel. This property of anandamide may provide a new therapeutic strategy to manipulate TRPV1 activity.


Subject(s)
Arachidonic Acids/pharmacology , Calcium Channel Blockers/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Animals , Arterioles/drug effects , CHO Cells , Calcineurin Inhibitors , Capsaicin/pharmacology , Cricetinae , Cricetulus , Cyclosporine/pharmacology , Endocannabinoids , Muscle, Skeletal/blood supply , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Phosphorylation , Polyunsaturated Alkamides , Rats , TRPV Cation Channels/metabolism , Tetradecanoylphorbol Acetate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...