Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rozhl Chir ; 101(1): 14-21, 2022.
Article in English | MEDLINE | ID: mdl-35148612

ABSTRACT

Pancreatic islets transplantation is an established treatment method for type 1 diabetic patients with the hypoglycemia unawareness syndrome in whom a therapy with modern technologies fails. Islet transplantation is most commonly done using an interventional radiology method: a tissue suspension of pancreatic islets is applied into a branch of the portal vein through a percutaneously installed catheter. Although being minimally invasive unlike pancreas organ transplant, this method is associated with many technical difficulties. Possible complications of the procedure include hemorrhage and portal vein thrombosis. Unlike their natural dispersed localization in exocrine pancreas, isolated pancreatic islets are exposed to hypoxia, toxins and immunosuppressive drugs in the liver parenchyma. Direct contact with the recipients blood causes an instant blood mediated inflammatory reaction (IBMIR) resulting in the death of more than half of the pancreatic islets shortly after their application. Therefore the size of the islet graft is often insufficient and a number of transplanted patients require administration of exogenous insulin. All of these are reasons for seeking an alternative transplantation site with more hospitable conditions for long-term islet survival. Various transplantation sites have been tested in experimental and clinical research. The advantages and disadvantages of some of them are summarized in this paper. Currently, transplantation into the greater omentum seems most promising, which has already been used in clinical practice at several institutions.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Graft Survival , Humans , Omentum , Pancreas
2.
Mol Imaging Biol ; 21(3): 454-464, 2019 06.
Article in English | MEDLINE | ID: mdl-30167995

ABSTRACT

PURPOSE: Combining specific and quantitative F-19 magnetic resonance imaging (MRI) with sensitive and convenient optical imaging provides complementary information about the distribution and viability of transplanted pancreatic islet grafts. In this study, pancreatic islets (PIs) were labeled with positively charged multimodal nanoparticles based on poly(lactic-co-glycolic acid) (PLGA-NPs) with encapsulated perfluoro-15-crown-5-ether and the near-infrared fluorescent dye indocyanine green. PROCEDURES: One thousand and three thousand bioluminescent PIs were transplanted into subcutaneous artificial scaffolds, which served as an alternative transplant site. The grafts were monitored using in vivo F-19 MR, fluorescence, and bioluminescence imaging in healthy rats for 2 weeks. RESULTS: Transplanted PIs were unambiguously localized in the scaffolds by F-19 MRI throughout the whole experiment. Fluorescence was detected in the first 4 days after transplantation only. Importantly, in vivo bioluminescence correlated with the F-19 MRI signal. CONCLUSIONS: We developed a trimodal imaging platform for in vivo examination of transplanted PIs. Fluorescence imaging revealed instability of the fluorescent dye and its limited applicability for longitudinal in vivo studies. A correlation between the bioluminescence signal and the F-19 MRI signal indicated the fast clearance of PLGA-NPs from the transplantation site after cell death, which addresses a major issue with intracellular imaging labels. Therefore, the proposed PLGA-NP platform is reliable for reflecting the status of transplanted PIs in vivo.


Subject(s)
Fluorine/chemistry , Islets of Langerhans Transplantation , Islets of Langerhans/diagnostic imaging , Luminescent Measurements , Magnetic Resonance Imaging , Molecular Imaging , Animals , Endocytosis , Fluorescence , Male , Models, Animal , Rats, Inbred Lew , Rats, Transgenic , Tissue Scaffolds/chemistry , Tissue Survival
SELECTION OF CITATIONS
SEARCH DETAIL
...