Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
PLoS One ; 8(11): e78678, 2013.
Article in English | MEDLINE | ID: mdl-24236034

ABSTRACT

Xeroderma pigmentosum group C (XP-C) is a rare human syndrome characterized by hypersensitivity to UV light and a dramatic predisposition to skin neoplasms. XP-C cells are deficient in the nucleotide excision repair (NER) pathway, a complex process involved in the recognition and removal of DNA lesions. Several XPC mutations have been described, including a founder mutation in North African patients involving the deletion of a TG dinucleotide (ΔTG) located in the middle of exon 9. This deletion leads to the expression of an inactive truncated XPC protein, normally involved in the first step of NER. New approaches used for gene correction are based on the ability of engineered nucleases such as Meganucleases, Zinc-Finger nucleases or TALE nucleases to accurately generate a double strand break at a specific locus and promote correction by homologous recombination through the insertion of an exogenous DNA repair matrix. Here, we describe the targeted correction of the ΔTG mutation in XP-C cells using engineered meganuclease and TALEN™. The methylated status of the XPC locus, known to inhibit both of these nuclease activities, led us to adapt our experimental design to optimize their in vivo efficacies. We show that demethylating treatment as well as the use of TALEN™ insensitive to CpG methylation enable successful correction of the ΔTG mutation. Such genetic correction leads to re-expression of the full-length XPC protein and to the recovery of NER capacity, attested by UV-C resistance of the corrected cells. Overall, we demonstrate that nuclease-based targeted approaches offer reliable and efficient strategies for gene correction.


Subject(s)
Deoxyribonucleases/genetics , Xeroderma Pigmentosum/therapy , Base Sequence , Cell Line , DNA Cleavage , DNA Methylation , DNA Repair , DNA-Binding Proteins/genetics , Epigenesis, Genetic , Genetic Therapy , Humans , Mutagenesis , Phenotype , Protein Engineering
2.
Hum Gene Ther ; 24(7): 692-701, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23790397

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe inherited, muscle-wasting disorder caused by mutations in the DMD gene. Gene therapy development for DMD has concentrated on vector-based DMD minigene transfer, cell-based gene therapy using genetically modified adult muscle stem cells or healthy wild-type donor cells, and antisense oligonucleotide-induced exon-skipping therapy to restore the reading frame of the mutated DMD gene. This study is an investigation into DMD gene targeting-mediated correction of deletions in human patient myoblasts using a target-specific meganuclease (MN) and a homologous recombination repair matrix. The MN was designed to cleave within DMD intron 44, upstream of a deletion hotspot, and integration-competent lentiviral vectors expressing the nuclease (LVcMN) were generated. MN western blotting and deep gene sequencing for LVcMN-induced non-homologous end-joining InDels (microdeletions or microinsertions) confirmed efficient MN expression and activity in transduced DMD myoblasts. A homologous repair matrix carrying exons 45-52 (RM45-52) was designed and packaged into integration-deficient lentiviral vectors (IDLVs; LVdRM45-52). After cotransduction of DMD myoblasts harboring a deletion of exons 45 to 52 with LVcMN and LVdRM45-52 vectors, targeted knock-in of the RM45-52 region in the correct location in DMD intron 44, and expression of full-length, correctly spliced wild-type dystrophin mRNA containing exons 45-52 were observed. This work demonstrates that genome surgery on human DMD gene mutations can be achieved by MN-induced locus-specific genome cleavage and homologous recombination knock-in of deleted exons. The feasibility of human DMD gene repair in patient myoblasts has exciting therapeutic potential.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/genetics , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Mutation/genetics , Targeted Gene Repair/methods , Blotting, Western , DNA Repair/genetics , Deoxyribonucleases/metabolism , Exons/genetics , Gene Knock-In Techniques/methods , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation/genetics , Lentivirus , Myoblasts/metabolism , Oligonucleotides, Antisense/genetics
3.
PLoS One ; 8(1): e53217, 2013.
Article in English | MEDLINE | ID: mdl-23359797

ABSTRACT

Targeting DNA double-strand breaks is a powerful strategy for gene inactivation applications. Without the use of a repair plasmid, targeted mutagenesis can be achieved through Non-Homologous End joining (NHEJ) pathways. However, many of the DNA breaks produced by engineered nucleases may be subject to precise re-ligation without loss of genetic information and thus are likely to be unproductive. In this study, we combined engineered endonucleases and DNA-end processing enzymes to increase the efficiency of targeted mutagenesis, providing a robust and efficient method to (i) greatly improve targeted mutagenesis frequency up to 30-fold, and; (ii) control the nature of mutagenic events using meganucleases in conjunction with DNA-end processing enzymes in human primary cells.


Subject(s)
DNA End-Joining Repair , DNA/metabolism , Endonucleases/metabolism , Mutagenesis , Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , DNA/genetics , DNA Primers , HEK293 Cells , Humans
4.
Nat Methods ; 9(10): 973-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22941364

ABSTRACT

Targeted DNA double-strand breaks introduced by rare-cleaving designer endonucleases can be harnessed for gene disruption applications by engaging mutagenic nonhomologous end-joining DNA repair pathways. However, endonuclease-mediated DNA breaks are often subject to precise repair, which limits the efficiency of targeted genome editing. To address this issue, we coupled designer endonucleases to DNA end-processing enzymes to drive mutagenic break resolution, achieving up to 25-fold enhancements in gene disruption rates.


Subject(s)
DNA Breaks, Double-Stranded , Endonucleases/physiology , Animals , DNA End-Joining Repair , DNA Repair , Exodeoxyribonucleases/physiology , HEK293 Cells , Humans , Mice , Phosphoproteins/physiology , Receptors, CCR5/physiology
5.
Nucleic Acids Res ; 40(13): 6367-79, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22467209

ABSTRACT

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤ 0.1% to ≈ 6%) with that of homologous gene targeting (≤ 0.1% to ≈ 15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.


Subject(s)
Chromosomal Position Effects , DNA Restriction Enzymes/metabolism , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , DNA Restriction Enzymes/chemistry , Gene Targeting , Genetic Engineering , Genome, Human , Humans , Mutagenesis
6.
Nucleic Acids Res ; 39(17): 7610-9, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21715375

ABSTRACT

Gene targeting can be achieved with lentiviral vectors delivering donor sequences along with a nuclease that creates a locus-specific double-strand break (DSB). Therapeutic applications of this system would require an appropriate control of the amount of endonuclease delivered to the target cells, and potentially toxic sustained expression must be avoided. Here, we show that the nuclease can be transferred into cells as a protein associated with a lentiviral vector particle. I-SceI, a prototypic meganuclease from yeast, was incorporated into the virions as a fusion with Vpr, an HIV accessory protein. Integration-deficient lentiviral vectors containing the donor sequences and the I-SceI fusion protein were tested in reporter cells in which targeting events were scored by the repair of a puromycin resistance gene. Molecular analysis of the targeted locus indicated a 2-fold higher frequency of the expected recombination event when the nuclease was delivered as a protein rather than encoded by a separate vector. In both systems, a proportion of clones displayed multiple integrated copies of the donor sequences, either as tandems at the targeted locus or at unrelated loci. These integration patterns were dependent upon the mode of meganuclease delivery, suggesting distinct recombination processes.


Subject(s)
Deoxyribonucleases, Type II Site-Specific/genetics , Gene Targeting/methods , Genetic Vectors , Lentivirus/genetics , Animals , CHO Cells , Cricetinae , Cricetulus , Deoxyribonucleases, Type II Site-Specific/metabolism , Genetic Loci , HEK293 Cells , Humans , Recombination, Genetic , Virion/genetics
7.
J Nucleic Acids ; 2011: 947212, 2011.
Article in English | MEDLINE | ID: mdl-21716659

ABSTRACT

Homologous gene targeting (HGT) is a precise but inefficient process for genome engineering. Several methods for increasing its efficiency have been developed, including the use of rare cutting endonucleases. However, there is still room for improvement, as even nuclease-induced HGT may vary in efficiency as a function of the nuclease, target site, and cell type considered. We have developed a high-throughput screening assay for the identification of factors stimulating meganuclease-induced HGT. We used this assay to explore a collection of siRNAs targeting 19,121 human genes. At the end of secondary screening, we had identified 64 genes for which knockdown affected nuclease-induced HGT. Two of the strongest candidates were characterized further. We showed that siRNAs directed against the ATF7IP gene, encoding a protein involved in chromatin remodeling, stimulated HGT by a factor of three to eight, at various loci and in different cell types. This method thus led to the identification of a number of genes, the manipulation of which might increase rates of targeted recombination.

8.
Nucleic Acids Res ; 39(14): 6124-36, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21482539

ABSTRACT

Homing endonucleases (HE) have emerged as precise tools for achieving gene targeting events. Redesigned HEs with tailored specificities can be used to cleave new sequences, thereby considerably expanding the number of targetable genes and loci. With HEs, as well as with other protein scaffolds, context dependence of DNA/protein interaction patterns remains one of the major limitations for rational engineering of new DNA binders. Previous studies have shown strong crosstalk between different residues and regions of the DNA binding interface. To investigate this phenomenon, we systematically combined mutations from three groups of amino acids in the DNA binding regions of the I-CreI HE. Our results confirm that important crosstalk occurs throughout this interface in I-CreI. Detailed analysis of success rates identified a nearest-neighbour effect, with a more pronounced level of dependence between adjacent regions. Taken together, these data suggest that combinatorial engineering does not necessarily require the identification of separable functional or structural regions, and that groups of amino acids provide acceptable building blocks that can be assembled, overcoming the context dependency of the DNA binding interface. Furthermore, the present work describes a sequential method to engineer tailored HEs, wherein three contiguous regions are individually mutated and assembled to create HEs with engineered specificity.


Subject(s)
DNA Restriction Enzymes/chemistry , DNA-Binding Proteins/chemistry , Binding Sites , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Models, Molecular , Mutation , Protein Engineering/methods , Protein Structure, Tertiary , Substrate Specificity
9.
Mol Ther ; 19(4): 694-702, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21224832

ABSTRACT

Herpes simplex virus type 1 (HSV1) is a major health problem. As for most viral diseases, current antiviral treatments are based on the inhibition of viral replication once it has already started. As a consequence, they impair neither the viral cycle at its early stages nor the latent form of the virus, and thus cannot be considered as real preventive treatments. Latent HSV1 virus could be addressed by rare cutting endonucleases, such as meganucleases. With the aim of a proof of concept study, we generated several meganucleases recognizing HSV1 sequences, and assessed their antiviral activity in cultured cells. We demonstrate that expression of these proteins in African green monkey kidney fibroblast (COS-7) and BSR cells inhibits infection by HSV1, at low and moderate multiplicities of infection (MOIs), inducing a significant reduction of the viral load. Furthermore, the remaining viral genomes display a high rate of mutation (up to 16%) at the meganuclease cleavage site, consistent with a mechanism of action based on the cleavage of the viral genome. This specific mechanism of action qualifies meganucleases as an alternative class of antiviral agent, with the potential to address replicative as well as latent DNA viral forms.


Subject(s)
Deoxyribonucleases/metabolism , Herpesviridae Infections/prevention & control , Animals , Blotting, Western , CHO Cells , COS Cells , Cell Line , Chlorocebus aethiops , Cricetinae , Cricetulus , Deoxyribonucleases/genetics , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/pathogenicity , Humans
10.
Nucleic Acids Res ; 39(2): 729-43, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20846960

ABSTRACT

Homing endonucleases recognize long target DNA sequences generating an accurate double-strand break that promotes gene targeting through homologous recombination. We have modified the homodimeric I-CreI endonuclease through protein engineering to target a specific DNA sequence within the human RAG1 gene. Mutations in RAG1 produce severe combined immunodeficiency (SCID), a monogenic disease leading to defective immune response in the individuals, leaving them vulnerable to infectious diseases. The structures of two engineered heterodimeric variants and one single-chain variant of I-CreI, in complex with a 24-bp oligonucleotide of the human RAG1 gene sequence, show how the DNA binding is achieved through interactions in the major groove. In addition, the introduction of the G19S mutation in the neighborhood of the catalytic site lowers the reaction energy barrier for DNA cleavage without compromising DNA recognition. Gene-targeting experiments in human cell lines show that the designed single-chain molecule preserves its in vivo activity with higher specificity, further enhanced by the G19S mutation. This is the first time that an engineered meganuclease variant targets the human RAG1 locus by stimulating homologous recombination in human cell lines up to 265 bp away from the cleavage site. Our analysis illustrates the key features for à la carte procedure in protein-DNA recognition design, opening new possibilities for SCID patients whose illness can be treated ex vivo.


Subject(s)
DNA Repair , DNA Restriction Enzymes/chemistry , Genes, RAG-1 , Cell Line , DNA/chemistry , DNA Cleavage , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , Gene Targeting , Genetic Loci , Humans , Models, Molecular , Mutation , Nucleic Acid Conformation , Protein Binding , Protein Engineering , Recombination, Genetic
11.
Curr Gene Ther ; 11(1): 11-27, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21182466

ABSTRACT

The importance of safer approaches for gene therapy has been underscored by a series of severe adverse events (SAEs) observed in patients involved in clinical trials for Severe Combined Immune Deficiency Disease (SCID) and Chromic Granulomatous Disease (CGD). While a new generation of viral vectors is in the process of replacing the classical gamma-retrovirus-based approach, a number of strategies have emerged based on non-viral vectorization and/or targeted insertion aimed at achieving safer gene transfer. Currently, these methods display lower efficacies than viral transduction although many of them can yield more than 1% of engineered cells in vitro. Nuclease-based approaches, wherein an endonuclease is used to trigger site-specific genome editing, can significantly increase the percentage of targeted cells. These methods therefore provide a real alternative to classical gene transfer as well as gene editing. However, the first endonuclease to be in clinic today is not used for gene transfer, but to inactivate a gene (CCR5) required for HIV infection. Here, we review these alternative approaches, with a special emphasis on meganucleases, a family of naturally occurring rare-cutting endonucleases, and speculate on their current and future potential.


Subject(s)
Endonucleases/genetics , Genetic Therapy/adverse effects , Genetic Therapy/trends , Genome , Animals , Endodeoxyribonucleases/physiology , Genetic Vectors , HIV Infections/etiology , Humans , Mice , Mice, SCID , Mutagenesis, Insertional , Receptors, CCR5/genetics
12.
J Biomol Screen ; 15(8): 956-67, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20625180

ABSTRACT

The development of cell-based assays for high-throughput screening (HTS) approaches often requires the generation of stable transformant cell lines. However, these cell lines are essentially created by random integration of a gene of interest (GOI) with no control over the level and stability of gene expression. The authors developed a targeted integration system in Chinese hamster ovary (CHO) cells, called the cellular genome positioning system (cGPS), based on the stimulation of homologous gene targeting by meganucleases. Five different GOIs were knocked in at the same locus in cGPS CHO-K1 cells. Further characterization revealed that the cGPS CHO-K1 system is more rapid (2-week protocol), efficient (all selected clones expressed the GOI), reproducible (GOI expression level variation of 12%), and stable over time (no change in GOI expression after 23 weeks of culture) than classical random integration. Moreover, in all cGPS CHO-K1 targeted clones, the recombinant protein was biologically active and its properties similar to the endogenous protein. This fast and robust method opens the door for creating large collections of cell lines of better quality and expressing therapeutically relevant GOIs at physiological levels, thereby enhancing the potential scope of HTS.


Subject(s)
Cells/metabolism , Deoxyribonucleases/physiology , Gene Targeting/methods , High-Throughput Screening Assays/methods , Mutagenesis, Site-Directed/methods , Animals , CHO Cells , Cell Line , Cells/cytology , Chromosome Mapping/methods , Cricetinae , Cricetulus , Deoxyribonucleases/metabolism , Models, Biological , Time Factors , Transfection
13.
Nucleic Acids Res ; 38(6): 2006-18, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20026587

ABSTRACT

Homing endonucleases have become valuable tools for genome engineering. Their sequence recognition repertoires can be expanded by modifying their specificities or by creating chimeric proteins through domain swapping between two subdomains of different homing endonucleases. Here, we show that these two approaches can be combined to create engineered meganucleases with new specificities. We demonstrate the modularity of the chimeric DmoCre meganuclease previously described, by successfully assembling mutants with locally altered specificities affecting both I-DmoI and I-CreI subdomains in order to create active meganucleases with altered specificities. Moreover these new engineered DmoCre variants appear highly specific and present a low toxicity level, similar to I-SceI, and can induce efficient homologous recombination events in mammalian cells. The DmoCre based meganucleases can therefore offer new possibilities for various genome engineering applications.


Subject(s)
DNA Restriction Enzymes/chemistry , DNA Restriction Enzymes/genetics , DNA-Binding Proteins/chemistry , Deoxyribonucleases, Type I Site-Specific/chemistry , Deoxyribonucleases, Type I Site-Specific/genetics , Animals , CHO Cells , Cell Survival , Combinatorial Chemistry Techniques , Cricetinae , Cricetulus , DNA Restriction Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxyribonucleases, Type I Site-Specific/metabolism , Mutagenesis , Mutation , Protein Engineering/methods , Protein Structure, Tertiary , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Substrate Specificity/genetics
14.
Blood ; 114(17): 3601-9, 2009 Oct 22.
Article in English | MEDLINE | ID: mdl-19692705

ABSTRACT

Nonhomologous end-joining DNA repair factors, including Artemis, are all required for the repair of DNA double-strand breaks, which occur during the assembly of the variable antigen recognition domain of B-cell receptors and T-cell receptors through the V(D)J recombination. Mature B cells further shape their immunoglobulin repertoire on antigen recognition notably through the class switch recombination (CSR) process. To analyze the role of Artemis during CSR, we developed a mature B-cell-specific Artemis conditional knockout mouse to bypass the absence of B cells caused by its early deficit. Although CSR is not overwhelmingly affected in these mice, class switching to certain isotypes is clearly reduced both in vitro on B-cell activation and in vivo after keyhole limpet hemocyanin immunization. The reduced CSR in Artemis-deficient B cells is accompanied by the increase in DNA microhomology usage at CSR junctions, the imprint of an alternative DNA end-joining pathway. Likewise, significant increase in DNA microhomology usage is the signature of CSR junctions obtained from human RS-SCID patients harboring hypomorphic Artemis mutations. Altogether, this indicates that Artemis participates in the repair of a subset of DNA breaks generated during CSR.


Subject(s)
DNA Breaks, Double-Stranded , Immunoglobulin A/genetics , Immunoglobulin Class Switching/genetics , Immunoglobulin G/genetics , Nuclear Proteins/physiology , Recombination, Genetic , Severe Combined Immunodeficiency/genetics , Adult , Animals , B-Lymphocytes/metabolism , Base Sequence , Blotting, Western , Child , Endonucleases , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Hemocyanins/administration & dosage , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Molecular Sequence Data , Mutation/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid
15.
Expert Opin Biol Ther ; 9(10): 1289-303, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19689185

ABSTRACT

BACKGROUND: In spite of significant advances in gene transfer strategies in the field of gene therapy, there is a strong emphasis on the development of alternative methods, providing better control of transgene expression and insertion patterns. OBJECTIVE: Several new approaches consist of targeting a desired transgene or gene modification in a well defined locus, and we collectively refer to them as 'targeted approaches'. The use of redesigned meganucleases is one of these emerging technologies. Here we try to define the potential of this method, in the larger scope of targeted strategies. METHODS: We survey the different types of targeted strategies, presenting the achievements and the potential applications, with a special emphasis on the use of redesigned endonucleases. CONCLUSION: redesigned endonucleases represent one of the most promising tools for targeted approaches, and the opening of a clinical trial for AIDS patients has recently shown the maturity of these strategies. However, there is still a 'quest' for the best reagents, that is the endonucleases providing the best efficacy:toxicity ratio. New advances in protein design have allowed the engineering of new scaffolds, such as meganucleases, and the landscape of existing methods is likely to change over the next few years.


Subject(s)
Endonucleases/genetics , Genetic Engineering , Genetic Therapy , Recombination, Genetic
16.
Nucleic Acids Res ; 37(16): 5405-19, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19584299

ABSTRACT

Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.


Subject(s)
DNA Restriction Enzymes/genetics , Gene Targeting , Genes, RAG-1 , Animals , CHO Cells , Cricetinae , Cricetulus , DNA Restriction Enzymes/chemistry , DNA Restriction Enzymes/metabolism , Dimerization , Genetic Engineering , Humans , Recombination, Genetic , Severe Combined Immunodeficiency/genetics
17.
Nature ; 456(7218): 107-11, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18987743

ABSTRACT

Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.


Subject(s)
DNA Restriction Enzymes/chemistry , DNA Restriction Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA/genetics , DNA/metabolism , Genetic Engineering , Xeroderma Pigmentosum/genetics , Animals , CHO Cells , Cell Line , Cricetinae , Cricetulus , Crystallography, X-Ray , DNA/chemistry , DNA Repair , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/toxicity , Enzyme Stability , Humans , Models, Molecular , Phosphorylation , Protein Multimerization , Substrate Specificity
18.
Proc Natl Acad Sci U S A ; 105(44): 16888-93, 2008 Nov 04.
Article in English | MEDLINE | ID: mdl-18974222

ABSTRACT

Homing endonucleases, also known as meganucleases, are sequence-specific enzymes with large DNA recognition sites. These enzymes can be used to induce efficient homologous gene targeting in cells and plants, opening perspectives for genome engineering with applications in a wide series of fields, ranging from biotechnology to gene therapy. Here, we report the crystal structures at 2.0 and 2.1 A resolution of the I-DmoI meganuclease in complex with its substrate DNA before and after cleavage, providing snapshots of the catalytic process. Our study suggests that I-DmoI requires only 2 cations instead of 3 for DNA cleavage. The structure sheds light onto the basis of DNA binding, indicating key residues responsible for nonpalindromic target DNA recognition. In silico and in vivo analysis of the I-DmoI DNA cleavage specificity suggests that despite the relatively few protein-base contacts, I-DmoI is highly specific when compared with other meganucleases. Our data open the door toward the generation of custom endonucleases for targeted genome engineering using the monomeric I-DmoI scaffold.


Subject(s)
DNA/chemistry , Deoxyribonucleases, Type I Site-Specific/chemistry , Base Sequence , Binding Sites , Crystallography, X-Ray , DNA/metabolism , DNA Cleavage , Deoxyribonucleases, Type I Site-Specific/metabolism , Dimerization , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Protein Conformation , Protein Engineering/methods , Substrate Specificity
19.
Methods Mol Biol ; 435: 31-45, 2008.
Article in English | MEDLINE | ID: mdl-18370066

ABSTRACT

Cell line development for protein production or for the screening of drug targets requires the reproducible and stable expression of transgenes. Such cell lines can be engineered with meganucleases, sequence-specific endonucleases that recognize large DNA target sites. These proteins are powerful tools for genome engineering because they can increase homologous gene targeting by several orders of magnitude in the vicinity of their cleavage site. Here, we describe in details the use of meganucleases for gene targeting in Chinese hamster ovary-K1 cells, with a special emphasis on a gene insertion procedure using a promoter-less marker gene for selection. We have also monitored the expression of genes inserted by meganucleases-induced recombination, and show that expression is reproducible among different targeted clones, and stable over a 4 mo period. These experiments were conducted with the natural yeast I-SceI meganuclease, but the general design and process can also be applied to engineered meganucleases.


Subject(s)
Cell Line , Deoxyribonucleases, Type II Site-Specific , Gene Targeting/methods , Animals , Blotting, Southern , CD4 Antigens/genetics , CHO Cells , Cricetinae , Cricetulus , Drug Resistance/genetics , Gene Expression , Genes, Reporter , Genetic Engineering/methods , Mutagenesis, Insertional , Oligonucleotide Probes , Recombination, Genetic , Saccharomyces cerevisiae Proteins , Transfection , beta-Galactosidase/biosynthesis , beta-Galactosidase/genetics
20.
Nucleic Acids Res ; 36(7): 2163-73, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18276641

ABSTRACT

Meganucleases cut long (>12 bp) unique sequences in genomes and can be used to induce targeted genome engineering by homologous recombination in the vicinity of their cleavage site. However, the use of natural meganucleases is limited by the repertoire of their target sequences, and considerable efforts have been made to engineer redesigned meganucleases cleaving chosen targets. Homodimeric meganucleases such as I-CreI have provided a scaffold, but can only be modified to recognize new quasi-palindromic DNA sequences, limiting their general applicability. Other groups have used dimer-interface redesign and peptide linkage to control heterodimerization between related meganucleases such as I-DmoI and I-CreI, but until now there has been no application of this aimed specifically at the scaffolds from existing combinatorial libraries of I-CreI. Here, we show that engineering meganucleases to form obligate heterodimers results in functional endonucleases that cut non-palindromic sequences. The protein design algorithm (FoldX v2.7) was used to design specific heterodimer interfaces between two meganuclease monomers, which were themselves engineered to recognize different DNA sequences. The new monomers favour functional heterodimer formation and prevent homodimer site recognition. This design massively increases the potential repertoire of DNA sequences that can be specifically targeted by designed I-CreI meganucleases and opens the way to safer targeted genome engineering.


Subject(s)
Algorithms , DNA Restriction Enzymes/chemistry , Protein Engineering/methods , Base Sequence , DNA/chemistry , DNA/metabolism , DNA Restriction Enzymes/genetics , DNA Restriction Enzymes/metabolism , Dimerization , Models, Molecular , Mutagenesis, Site-Directed , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...