Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Mol Phylogenet Evol ; 198: 108135, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925425

ABSTRACT

Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.

2.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36869752

ABSTRACT

Song is considered to play an important role in the maintenance of prezygotic reproductive isolation between closely related songbird species. Therefore, song mixing in a contact zone between closely related species is often considered as evidence of hybridization. The Sichuan Leaf Warbler Phylloscopus forresti and the Gansu Leaf Warbler Phylloscopus kansuensis, which diverged 2 million years ago, have formed a contact zone in the south of the Gansu Province of China, where mixed songs have been observed. In this study, we investigated the potential causes and consequences of song mixing by integrating bioacoustic, morphological, mitochondrial, and genomic data with field ecological observations. We found that the two species display no apparent morphological differences, whereas their songs differ dramatically. We demonstrated that ∼11% of the males in the contact zone sang mixed songs. Two males singing mixed song were genotyped, and both were found to be P. kansuensis. Despite the presence of mixed singers, population genomic analyses detected no signs of recent gene flow between the two species, although two possible cases of mitochondrial introgression were identified. We conclude that the rather limited song mixing does not lead to, or result from, hybridization, and hence does not result in the breakdown of reproductive barriers between these cryptic species.


Subject(s)
Passeriformes , Songbirds , Male , Animals , Songbirds/genetics , Gene Flow , Passeriformes/genetics , Reproductive Isolation , Genomics , Vocalization, Animal
3.
Commun Biol ; 5(1): 429, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534538

ABSTRACT

Bird-mediated seed dispersal is crucial for the regeneration and viability of ecosystems, often resulting in complex mutualistic species networks. Yet, how this mutualism drives the evolution of seed dispersing birds is still poorly understood. In the present study we combine whole genome re-sequencing analyses and morphometric data to assess the evolutionary processes that shaped the diversification of the Eurasian nutcracker (Nucifraga), a seed disperser known for its mutualism with pines (Pinus). Our results show that the divergence and phylogeographic patterns of nutcrackers resemble those of other non-mutualistic passerine birds and suggest that their early diversification was shaped by similar biogeographic and climatic processes. The limited variation in foraging traits indicates that local adaptation to pines likely played a minor role. Our study shows that close mutualistic relationships between bird and plant species might not necessarily act as a primary driver of evolution and diversification in resource-specialized birds.


Subject(s)
Passeriformes , Pinus , Seed Dispersal , Animals , Ecosystem , Passeriformes/genetics , Seeds/genetics , Symbiosis
4.
Ecol Evol ; 11(23): 17332-17351, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34938512

ABSTRACT

In the Himalayas, a number of secondary contact zones have been described for vicariant vertebrate taxa. However, analyses of genetic divergence and admixture are missing for most of these examples. In this study, we provide a population genetic analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes between the distinctive western "spot-winged tit" (P. a. melanolophus) and Eastern Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in western Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from a single population so far. Genetic admixture of western and eastern mitochondrial lineages was restricted to the narrow zone of phenotypically intermediate populations. The cline width was estimated 46 km only with a center close to the population of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite loci was asymmetrical from eastern P. a. aemodius into far western populations of phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline was about 3.7 times wider than the mitochondrial one.

5.
Ecol Evol ; 11(22): 16354-16364, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34824832

ABSTRACT

A recent article in Ecology and Evolution featured the discovery of hybrid snowcocks (Tetraogallus) and speculated on the hybrid origin of an extant species (T. altaicus). Comprehensive re-analyses of original data from the latter paper reliably refute the phylogenetic hypothesis taken as firm evidence of a past hybridization event in these birds. The new re-analyses showed that there is no evidence of hybridization in these snowcocks from the data available so far.

6.
Ecol Evol ; 10(17): 9283-9300, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32953061

ABSTRACT

Encompassing some of the major hotspots of biodiversity on Earth, large mountain systems have long held the attention of evolutionary biologists. The region of the Qinghai-Tibet Plateau (QTP) is considered a biogeographic source for multiple colonization events into adjacent areas including the northern Palearctic. The faunal exchange between the QTP and adjacent regions could thus represent a one-way street ("out of" the QTP). However, immigration into the QTP region has so far received only little attention, despite its potential to shape faunal and floral communities of the QTP. In this study, we investigated centers of origin and dispersal routes between the QTP, its forested margins and adjacent regions for five clades of alpine and montane birds of the passerine superfamily Passeroidea. We performed an ancestral area reconstruction using BioGeoBEARS and inferred a time-calibrated backbone phylogeny for 279 taxa of Passeroidea. The oldest endemic species of the QTP was dated to the early Miocene (ca. 20 Ma). Several additional QTP endemics evolved in the mid to late Miocene (12-7 Ma). The inferred centers of origin and diversification for some of our target clades matched the "out of Tibet hypothesis' or the "out of Himalayas hypothesis" for others they matched the "into Tibet hypothesis." Three radiations included multiple independent Pleistocene colonization events to regions as distant as the Western Palearctic and the Nearctic. We conclude that faunal exchange between the QTP and adjacent regions was bidirectional through time, and the QTP region has thus harbored both centers of diversification and centers of immigration.

7.
PLoS One ; 15(3): e0230151, 2020.
Article in English | MEDLINE | ID: mdl-32191719

ABSTRACT

The Mediterranean Basin represents a Global Biodiversity Hotspot where many organisms show high inter- and intraspecific differentiation. Extant phylogeographic patterns of terrestrial circum-Mediterranean faunas were mainly shaped through Pleistocene range shifts and range fragmentations due to retreat into different glacial refugia. Thus, several extant Mediterranean bird species have diversified by surviving glaciations in different hospitable refugia and subsequently expanded their distribution ranges during the Holocene. Such a scenario was also suggested for the Eurasian Wren (Nannus troglodytes) despite the lack of genetic data for most Mediterranean subspecies. Our phylogenetic multi-locus analysis comprised 18 out of 28 currently accepted subspecies of N. troglodytes, including all but one subspecies which are present in the Mediterranean Basin. The resulting phylogenetic reconstruction dated the onset of the entire Holarctic radiation of three Nannus species to the early Pleistocene. In the Eurasian Wren, two North African subspecies represented separate basal lineages from the Maghreb (N. t. kabylorum) and from the Libyan Cyrenaica (N. t. juniperi), being only distantly related to other Mediterranean populations. Although N. troglodytes appeared to be paraphyletic with respect to the Nearctic Winter Wren (N. hiemalis), respective nodes did not receive strong statistical support. In contrast, paraphyly of the Ibero-Maghrebian taxon N. t. kabylorum was strongly supported. Southern Iberian populations of N. t. kabylorum did not clade with Maghrebian populations of the same subspecies but formed a sister clade to a highly diverse European clade (including nominate N. t. troglodytes and eight further taxa). In accordance with a pattern also found in other birds, Eurasian populations were split into a western clade (Europe, Caucasus) and an eastern clade (Central Asia, Sino-Himalayas, East Asia). This complex phylogeographic pattern revealed cryptic diversification in N. troglodytes, especially in the Iberio-Maghrebian region.


Subject(s)
Phylogeography , Songbirds/classification , Africa, Northern , Animals , Biodiversity , Biological Evolution , DNA, Mitochondrial/genetics , Europe , Genetic Markers/genetics , Genetic Variation , Phylogeny , Songbirds/genetics
8.
Ecol Evol ; 9(22): 12710-12726, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31788209

ABSTRACT

Under different environmental conditions, hybridization between the same species might result in different patterns of genetic admixture. Particularly, species pairs with large distribution ranges and long evolutionary history may have experienced several independent hybridization events over time in different zones of overlap. In birds, the diverse hybrid populations of the house sparrow (Passer domesticus) and the Spanish sparrow (Passer hispaniolensis) provide a striking example. Throughout their range of sympatry, these two species do not regularly interbreed; however, a stabilized hybrid form (Passer italiae) exists on the Italian Peninsula and on several Mediterranean islands. The spatial distribution pattern on the Eurasian continent strongly contrasts the situation in North Africa, where house sparrows and Spanish sparrows occur in close vicinity of phenotypically intermediate populations across a broad mosaic hybrid zone. In this study, we investigate patterns of divergence and admixture among the two parental species, stabilized and nonstabilized hybrid populations in Italy and Algeria based on a mitochondrial marker, a sex chromosomal marker, and 12 microsatellite loci. In Algeria, despite strong spatial and temporal separation of urban early-breeding house sparrows and hybrids and rural late-breeding Spanish sparrows, we found strong genetic admixture of mitochondrial and nuclear markers across all study populations and phenotypes. That pattern of admixture in the North African hybrid zone is strikingly different from i) the Iberian area of sympatry where we observed only weak asymmetrical introgression of Spanish sparrow nuclear alleles into local house sparrow populations and ii) the very homogenous Italian sparrow population where the mitogenome of one parent (P. domesticus) and the Z-chromosomal marker of the other parent (P. hispaniolensis) are fixed. The North African sparrow hybrids provide a further example of enhanced hybridization along with recent urbanization and anthropogenic land-use changes in a mosaic landscape.

9.
Sci Rep ; 9(1): 16082, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31695069

ABSTRACT

In endotherm animals, several traits are related to climate. For example, Bergmann's rule predicts a decrease in body size within species and across closely related species with increasing temperature, whereas Gloger's rule states that birds and mammals should be darker in humid and warm environments compared to colder and drier areas. However, it is still not clear whether ecotypic responses to variation in the local environment can also apply to morphological and colouration changes through time in response to climate change. We present a 100-year-long time series on morphological and melanin-based colours of snowfinch (325 Montifringilla, 92 Pyrgilauda and 30 Onychostruthus) museum specimens. Here we show that the tarsus length of the species has decreased and the saturation of the melanin-based colour has increased, which was correlated with the increase of temperature and precipitations. As ecotypic variations are tightly linked to individual behavioural and physiological responses to environmental variations, differently sized and coloured individuals are expected to be differently penalized by global changes. This study opens the pertinent question about whether ecotypic responses can enhance population persistence in the context of global change.


Subject(s)
Birds/physiology , Ecotype , Animals , Birds/classification , Birds/growth & development , Body Size , Climate Change , Color , Melanins/metabolism , Temperature
10.
Mitochondrial DNA B Resour ; 4(2): 3809-3812, 2019 Oct 26.
Article in English | MEDLINE | ID: mdl-33366199

ABSTRACT

Mitochondrial heteroplasmy is the result from biparental transmission of mitochondrial DNA (mtDNA) to the offspring. In such rare cases, maternal and paternal mtDNA is present in the same individual. Though recent studies suggested that mtDNA heteroplasmy might be more common than previously anticipated, that phenomenon is still poorly documented and was mostly detected in case studies on hybrid populations. The Italian sparrow, Passer italiae is a homoploid hybrid form that occurs all across the Italian Peninsula mostly under strict absence of either of its parent species, the house sparrow (P. domesticus) and the Spanish sparrow (P. hispaniolensis). In this study, we document a new case of mitochondrial heteroplasmy from two island populations of P. italiae (Ustica and Lipari). Our analysis was based on the mitochondrial NADH dehydrogenase subunit 2 (ND2) that allows for a clear distinction between mitochondrial lineages of the two parental species. We amplified and sequenced the mitochondrial ND2 gene with specifically designed primer combinations for each of the two parental species. In two of our study populations, a single individual carried two different ND2 haplotypes from each of the two parental lineages. These findings contribute to current knowledge on the still poorly documented phenomenon of paternal leakage in vertebrates.

11.
Mol Phylogenet Evol ; 125: 127-137, 2018 08.
Article in English | MEDLINE | ID: mdl-29535030

ABSTRACT

The owl family Tytonidae comprises two genera: Phodilus, limited to the forests of central Africa and South-East Asia, and the ubiquitous Tyto. The genus Tyto is majorly represented by the cosmopolitan Common Barn Owl group, with more than 30 subspecies worldwide. Discrete differences in body size and plumage colouration have led to the classification of this family into many species and subspecies, but the taxonomic status and phylogenetic relationships between taxa remain unclear, and in some groups controversial. Although several previous studies attempted to resolve this problem, they have been limited in their taxonomic and geographical coverage, or have relied on restricted molecular evidence and low sample sizes. Based on the most comprehensive sampling to date (16 out of 17 Tyto species, and one out of three Phodilus species), a multi-locus approach using seven mitochondrial and two nuclear markers, and taking advantage of field data and museum collections available worldwide, our main questions in this study were: (1) what are the phylogenetic relationships and classification status of the whole family; (2) when and where did the most important speciation events occur? We confirm that the Common Barn Owl, Tyto alba is divided into three main evolutionary units: the American Barn Owl, T. furcata; the Western Barn Owl, T. alba; and the Eastern Barn Owl, T. javanica, and suggest a Late Miocene (ca. 6 mya) Australasian and African origin of the group. Our results are supported by fossil age information, given that the most recent common ancestor between the Tytonidae genera Phodilus and Tyto was probably from the Oligocene (ca. 28 mya) of Australasia. We finally reveal six major Pleistocene radiations of Tyto, all resulting in wide-range distributions.


Subject(s)
Fossils , Phylogeny , Strigiformes/classification , Animals , Australasia , Bayes Theorem , Geography , Likelihood Functions , Strigiformes/genetics , Time Factors
12.
Mol Phylogenet Evol ; 120: 28-32, 2018 03.
Article in English | MEDLINE | ID: mdl-29199105

ABSTRACT

Molecular studies have revealed a number of cases in which traditional assessments of evolutionary relationships have been incorrect. This has implications not only for systematics and taxonomy but also for our understanding of how diversity patterns on Earth have been formed. Here, we use high-throughput sequencing technology to obtain molecular data from the holotype specimen of the elusive Eutrichomyias rowleyi, which is endemic to the Indonesian island of Sangihe. We show that E. rowleyi unexpectedly is a member of the family Lamproliidae, which dates back some 20 Million years and only include two other species, Lamprolia victoriae from Fiji and Chaetorhynchus papuensis from New Guinea. Tectonic reconstructions suggest that the Melanesian island arc, which included land masses on the northern edge of the Australian plate (present day New Guinea) stretched as a string of islands from the Philippines (including proto-Sangihe) to Fiji from 25 to 20 My. Consequently, our results are indicative of an ancient distribution along the Melanesian island arc followed by relictualization, which led to members of the Lamproliidae to be distributed on widely separated islands across the Indo-Pacific.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Passeriformes/genetics , Phylogeography , Animals , Australia , Fiji , Islands , Philippines , Phylogeny , Time Factors
13.
Mol Phylogenet Evol ; 107: 538-550, 2017 02.
Article in English | MEDLINE | ID: mdl-27965081

ABSTRACT

A recent full species-level phylogeny of tits, titmice and chickadees (Paridae) has placed the Chinese endemic black-bibbed tit (Poecile hypermelaenus) as the sister to the Palearctic willow tit (P. montanus). Because this sister-group relationship is in striking disagreement with the traditional affiliation of P. hypermelaenus close to the marsh tit (P. palustris) we tested this phylogenetic hypothesis in a multi-locus analysis with an extended taxon sampling including sixteen subspecies of willow tits and marsh tits. As a taxonomic reference we included type specimens in our analysis. The molecular genetic study was complemented with an analysis of biometric data obtained from museum specimens. Our phylogenetic reconstructions, including a comparison of all GenBank data available for our target species, clearly show that the genetic lineage previously identified as P. hypermelaenus actually refers to P. weigoldicus because sequences were identical to that of a syntype of this taxon. The close relationship of P. weigoldicus and P. montanus - despite large genetic distances between the two taxa - is in accordance with current taxonomy and systematics. In disagreement with the previous phylogenetic hypothesis but in accordance with most taxonomic authorities, all our P. hypermelaenus specimens fell in the sister clade of all western and eastern Palearctic P. palustris. Though shared haplotypes among the Chinese populations of the two latter species might indicate mitochondrial introgression in this part of the breeding range, further research is needed here due to the limitations of our own sampling.


Subject(s)
Passeriformes/classification , Animals , China , DNA Barcoding, Taxonomic , DNA, Mitochondrial/genetics , Genetic Loci , Passeriformes/genetics , Phylogeny , Phylogeography , Species Specificity
14.
Ecol Evol ; 6(15): 5190-206, 2016 08.
Article in English | MEDLINE | ID: mdl-27551376

ABSTRACT

A stabilized hybrid form of the house sparrow (Passer domesticus) and the Spanish sparrow (P. hispaniolensis) is known as Passer italiae from the Italian Peninsula and a few Mediterranean islands. The growing attention for the Italian hybrid sparrow and increasing knowledge on its biology and genetic constitution greatly contrast the complete lack of knowledge of the long-known phenotypical hybrid sparrow populations from North Africa. Our study provides new data on the breeding biology and variation of mitochondrial DNA in three Algerian populations of house sparrows, Spanish sparrows, and phenotypical hybrids. In two field seasons, the two species occupied different breeding habitats: Spanish sparrows were only found in rural areas outside the cities and bred in open-cup nests built in large jujube bushes. In contrast, house sparrows bred only in the town centers and occupied nesting holes in walls of buildings. Phenotypical hybrids were always associated with house sparrow populations. House sparrows and phenotypical hybrids started breeding mid of March, and most pairs had three successive clutches, whereas Spanish sparrows started breeding almost one month later and had only two successive clutches. Mitochondrial introgression is strongly asymmetric because about 75% of the rural Spanish sparrow population carried house sparrow haplotypes. In contrast, populations of the Italian hybrid form, P. italiae, were genetically least diverse among all study populations and showed a near-fixation of house sparrow haplotypes that elsewhere were extremely rare or that were even unique for the Italian Peninsula. Such differences between mitochondrial gene pools of Italian and North African hybrid sparrow populations provide first evidence that different demographic histories have shaped the extant genetic diversity observed on both continents.

15.
Mol Phylogenet Evol ; 102: 97-103, 2016 09.
Article in English | MEDLINE | ID: mdl-27233436

ABSTRACT

Species identification has traditionally relied on morphology. However, morphological conservatism can lead to a high incidence of cryptic species, as characters other than morphological ones can be biologically important. In birds, the combined application of bioacoustic and molecular criteria has led to an avalanche of cryptic species discoveries over the last two decades in which findings of deep vocal differentiation have usually been corroborated by molecular data or vice versa. In this study, we use genome-wide DNA data to uncover an unusual case of cryptic speciation in two species within the South-east Asian Streak-eared Bulbul Pycnonotus blanfordi complex, in which both morphology and vocalizations have remained extremely similar. Despite a considerable pre-Pleistocene divergence of these two bulbul species, bioacoustic analysis failed to uncover differences in their main vocalization, but examination of live birds revealed important differences in eye color that had been overlooked in museum material. Our study demonstrates that genome-wide DNA data can be helpful in the detection of cryptic speciation, especially in species that have evolved limited morphological and behavioral differences.


Subject(s)
Genome , Passeriformes/anatomy & histology , Passeriformes/genetics , Phylogeny , Vocalization, Animal , Acoustics , Animals , DNA/genetics , Geography , Pigmentation , Principal Component Analysis , Sequence Analysis, DNA
16.
Ecol Evol ; 5(3): 781-98, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25691998

ABSTRACT

Songs in passerine birds are important for territory defense and mating. Speciation rates in oscine passerines are so high, due to cultural evolution, that this bird lineage makes up half of the extant bird species. Leaf warblers are a speciose Old-World passerine family of limited morphological differentiation, so that songs are even more important for species delimitation. We took 16 sonographic traits from song recordings of 80 leaf warbler taxa and correlated them with 15 potentially explanatory variables, pairwise, and in linear models. Based on a well-resolved molecular phylogeny of the same taxa, all pairwise correlations were corrected for relatedness with phylogenetically independent contrasts and phylogenetic generalized linear models were used. We found a phylogenetic signal for most song traits, but a strong one only for the duration of the longest and of the shortest element, which are presumably inherited instead of learned. Body size of a leaf warbler species is a constraint on song frequencies independent of phylogeny. At least in this study, habitat density had only marginal impact on song features, which even disappeared through phylogenetic correction. Maybe most leaf warblers avoid the deterioration through sound propagation in dense vegetation by singing from exposed perches. Latitudinal (and longitudinal) extension of the breeding ranges was correlated with most song features, especially verse duration (longer polewards and westwards) and complexity (lower polewards). Climate niche or expansion history might explain these correlations. The number of different element types per verse decreases with elevation, possibly due to fewer resources and congeneric species at higher elevations.

17.
Biol Rev Camb Philos Soc ; 90(1): 236-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24784793

ABSTRACT

Biodiversity is unevenly distributed on Earth and hotspots of biodiversity are often associated with areas that have undergone orogenic activity during recent geological history (i.e. tens of millions of years). Understanding the underlying processes that have driven the accumulation of species in some areas and not in others may help guide prioritization in conservation and may facilitate forecasts on ecosystem services under future climate conditions. Consequently, the study of the origin and evolution of biodiversity in mountain systems has motivated growing scientific interest. Despite an increasing number of studies, the origin and evolution of diversity hotspots associated with the Qinghai-Tibetan Plateau (QTP) remains poorly understood. We review literature related to the diversification of organisms linked to the uplift of the QTP. To promote hypothesis-based research, we provide a geological and palaeoclimatic scenario for the region of the QTP and argue that further studies would benefit from providing a complete set of complementary analyses (molecular dating, biogeographic, and diversification rates analyses) to test for a link between organismic diversification and past geological and climatic changes in this region. In general, we found that the contribution of biological interchange between the QTP and other hotspots of biodiversity has not been sufficiently studied to date. Finally, we suggest that the biological consequences of the uplift of the QTP would be best understood using a meta-analysis approach, encompassing studies on a variety of organisms (plants and animals) from diverse habitats (forests, meadows, rivers), and thermal belts (montane, subalpine, alpine, nival). Since the species diversity in the QTP region is better documented for some organismic groups than for others, we suggest that baseline taxonomic work should be promoted.


Subject(s)
Altitude , Biological Evolution , Ecosystem , Geological Phenomena , Animals , Tibet
18.
Ecol Evol ; 3(14): 4799-814, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24363905

ABSTRACT

Global climate change is one of the major driving forces for adaptive shifts in migration and breeding phenology and possibly impacts demographic changes if a species fails to adapt sufficiently. In Western Europe, pied flycatchers (Ficedula hypoleuca) have insufficiently adapted their breeding phenology to the ongoing advance of food peaks within their breeding area and consequently suffered local population declines. We address the question whether this population decline led to a loss of genetic variation, using two neutral marker sets (mitochondrial control region and microsatellites), and one potentially selectively non-neutral marker (avian Clock gene). We report temporal changes in genetic diversity in extant populations and biological archives over more than a century, using samples from sites differing in the extent of climate change. Comparing genetic differentiation over this period revealed that only the recent Dutch population, which underwent population declines, showed slightly lower genetic variation than the historic Dutch population. As that loss of variation was only moderate and not observed in all markers, current gene flow across Western and Central European populations might have compensated local loss of variation over the last decades. A comparison of genetic differentiation in neutral loci versus the Clock gene locus provided evidence for stabilizing selection. Furthermore, in all genetic markers, we found a greater genetic differentiation in space than in time. This pattern suggests that local adaptation or historic processes might have a stronger effect on the population structure and genetic variation in the pied flycatcher than recent global climate changes.

19.
Mol Phylogenet Evol ; 67(2): 458-67, 2013 May.
Article in English | MEDLINE | ID: mdl-23454090

ABSTRACT

Afrocanarian blue tits (Cyanistes teneriffae) have a scattered distribution on the Canary Islands and on the North African continent. To date, the Canary Islands have been considered the species' main Pleistocene evolutionary center, but their colonization pathways remain uncertain. We set out to reconstruct a dated multi-gene phylogeny and ancestral ranges for Cyanistes tit species including the currently unstudied, peripheral Libyan population of C. t. cyrenaicae. In all reconstructions the most easterly and westerly peripheral populations (in Libya and on La Palma) represented basal offshoots of C. teneriffae. These two peripheral populations shared all four major indels and differed in this respect from all other members of the Afrocanarian core group. The basal split of Afrocanarian blue tits from their European relatives was dated to the early Pliocene. The two ancestral area reconstructions were contradictory and suggested either a Canarian or a North African origin of C. teneriffae - but unambiguously ruled out a continental European ancestral range. We conclude that the peripheral populations of C. teneriffae represent relic lineages of a first faunal interchange, presumably downstream colonization from North Africa to the Canary Islands. Subsequent eastward stepping-stone colonization within the Canarian Archipelago culminated in a very recent late (possibly even post-) Pleistocene back-colonization from the Canary Islands to North Africa.


Subject(s)
Animal Migration , DNA, Mitochondrial/genetics , Phylogeny , Africa, Northern , Animals , Birds , Genetics, Population , Spain
20.
Mol Phylogenet Evol ; 63(3): 606-16, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22361213

ABSTRACT

We provide a molecular phylogeny for Old World swifts of genera Apus and Tachymarptis (tribe Apodini) based on a taxon-complete sampling at the species level. Phylogenetic reconstructions were based on two mitochondrial (cytochrome b, 12S rRNA) and three nuclear markers (introns of fibrinogen and glyceraldehyde 3-phosphate dehydrogenase plus anonymous marker 12884) while the myoglobin intron 2 did not show any intergeneric variation or phylogenetic signal among the target taxa at all. In contrast to previous hypotheses, the two genera Apus and Tachymarptis were shown as reciprocally monophyletic in all reconstructions. Apus was consistently divided into three major clades: (1) East Asian clade of A. pacificus and A. acuticauda, (2) African-Asian clade of A. caffer, A. batesi, A. horus, A. affinis and A. nipalensis, (3) African-Palearctic clade of eight currently accepted species among which sequences of A. apus and A. pallidus clustered in a terminal crown clade. Phylogenetic signal of all four nuclear markers was extremely shallow within and among species of tribe Apodini and even among genera, such that intra- and intergeneric relationships of Apus, Tachymarptis and Cypsiurus were poorly resolved by nuclear data alone. Four species, A. pacificus, A. barbatus, A. affinis and A. caffer were consistently found to be paraphyletic with respect to their closest relatives and possible taxonomic consequences are discussed without giving particular recommendations due to limitations of sampling. Incomplete mitochondrial lineage sorting with cytochrome-b haplotypes shared among species and across large geographic distances was observed in two species pairs: A. affinis/A. nipalensis and A. apus/A. pallidus. Mitochondrial introgression caused by extant or past gene flow was ruled out as an explanation for the low interspecific differentiation in these two cases because all nuclear markers appeared to be highly unsorted among Apus species, too. Apparently, the two extant species pairs originated from very recent dispersal and/or speciation events. The currently accepted superspecies classification within Apus was not supported by our results.


Subject(s)
Birds/genetics , Cell Nucleus/genetics , Mitochondria/genetics , Phylogeny , Animals , Avian Proteins/genetics , Bayes Theorem , Birds/classification , Cytochromes b/genetics , Genetic Markers , Likelihood Functions , Models, Genetic , Multilocus Sequence Typing , RNA, Ribosomal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...