Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 12(15): 2798-805, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22002894

ABSTRACT

Scanning electrochemical microscopy visualizes concentration profiles. To determine the location of the probe relative to topographical features of the substrate, knowledge of the probe-to-sample distance at each probe position is required. The use of electrochemical impedance spectroscopy for obtaining information on the substrate-to-probe distance and on the concentration of interest using the electrochemical probe alone is suggested. By tuning the frequencies of interrogation, the probe-to-substrate distance can be derived followed by interrogation of processes that carry information on concentration at lower frequencies. These processes may include charge-transfer relaxation, diffusional relaxation at the electrode, and open-circuit potential at zero frequency. A potentiometric chloride sensing microprobe is used herein to reconstruct both topography and the concentration field at a microscopic diffusional source of chloride.


Subject(s)
Biosensing Techniques/methods , Microscopy, Scanning Probe/methods , Biosensing Techniques/instrumentation , Chlorides/analysis , Electric Impedance , Electrochemistry , Ion-Selective Electrodes , Microelectrodes , Microscopy, Scanning Probe/instrumentation , Models, Chemical , Potentiometry , Solutions , Surface Properties
2.
Chemistry ; 17(3): 905-11, 2011 Jan 17.
Article in English | MEDLINE | ID: mdl-21226106

ABSTRACT

The suitability of frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for investigation of thin passivating layers covering the surface of corrosion-inhibited metals has been demonstrated. Inhibition of copper corrosion by benzotriazole (BTAH) and methylbenzotriazole (MBTAH), which are effective inhibitors for this metal under many environmental conditions, was investigated. Strong dependencies were found for the AC z-approach curves with both the duration of the inhibitor treatment and the frequency of the AC excitation signal applied in AC-SECM. Both negative and positive feedback behaviours were observed in the AC approach curves for untreated copper and for Cu/BTAH and Cu/MBTAH samples. Negative feedback behaviour occurred in the low-frequency range, whereas a positive feedback effect was observed at higher frequencies. A threshold frequency related to the passage from negative to positive regimes could be determined in each case. The threshold frequency for inhibitor-modified samples was found always to be significantly higher than for the untreated metal, because the inhibitor film provides electrical insulation for the surface. Moreover, the threshold frequency increased with increasing surface coverage by the inhibitor. 4D AC-SECM was successfully applied to visualizing spatially resolved differences in local electrochemical activity between inhibitor-free and inhibitor-covered areas of the sample.

SELECTION OF CITATIONS
SEARCH DETAIL
...