Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 45(43): 17420-17430, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27734036

ABSTRACT

Herein we report the synthesis and investigation of the properties of two tris-cyclometalated luminescent iridium complexes. These complexes are the simple derivatives of fac-[Ir(ppy)3] bearing amino alkyl groups on one of the phenylpyridine rings. The complexes are highly emissive and exhibit structured emission peaks in aqueous solution while having only broad unstructured emission in organic solvents. The complexes have been shown to be taken up by NIH-3T3 and PC3 cells, where they localize in the lysosomes and remain emissive with lifetimes in the microsecond domain.


Subject(s)
Aminopyridines/chemistry , Iridium/chemistry , Luminescent Agents/chemistry , Organometallic Compounds , Animals , Cell Membrane/metabolism , Endocytosis , Humans , Luminescence , Lysosomes/chemistry , Mice , Molecular Structure , NIH 3T3 Cells , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry
2.
Biophys J ; 75(1): 389-98, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9649396

ABSTRACT

A spectroscopic characterization of the chlorophyll a (Chl) molecule in the monomeric cytochrome b6f complex (Cytb6f) isolated from the cyanobacterium Synechocystis PCC6803 is presented. The fluorescence lifetime and quantum yield have been determined, and it is shown that Chl in Cytb6f has an excited-state lifetime that is 20 times smaller than that of Chl in methanol. This shortening of the Chl excited state lifetime is not caused by an increased rate of intersystem crossing. Most probably it is due to quenching by a nearby amino acid. It is suggested that this quenching is a mechanism for preventing the formation of Chl triplets, which can lead to the formation of harmful singlet oxygen. Using site-selected fluorescence spectroscopy, detailed information on vibrational frequencies in both the ground and Qy excited states has been obtained. The vibrational frequencies indicate that the Chl molecule has one axial ligand bound to its central magnesium and accepts a hydrogen bond to its 13(1)-keto carbonyl. The results show that the Chl binds to a well-defined pocket of the protein and experiences several close contacts with nearby amino acids. From the site-selected fluorescence spectra, it is further concluded that the electron-phonon coupling is moderately strong. Simulations of both the site-selected fluorescence spectra and the temperature dependence of absorption and fluorescence spectra are presented. These simulations indicate that the Huang-Rhys factor characterizing the electron-phonon coupling strength is between 0.6 and 0.9. The width of the Gaussian inhomogeneous distribution function is 210 +/- 10 cm-1.


Subject(s)
Chlorophyll/chemistry , Cytochrome b Group/chemistry , Binding Sites , Biophysical Phenomena , Biophysics , Chlorophyll A , Cyanobacteria/chemistry , Cytochrome b6f Complex , Fluorescence Polarization , Models, Chemical , Molecular Structure , Oxidation-Reduction , Photosynthetic Reaction Center Complex Proteins/chemistry , Quantum Theory , Spectrometry, Fluorescence , Spectrophotometry
3.
Biophys J ; 74(5): 2611-22, 1998 May.
Article in English | MEDLINE | ID: mdl-9591685

ABSTRACT

Photosystem I of the cyanobacterium Synechococcus elongatus contains two spectral pools of chlorophylls called C-708 and C-719 that absorb at longer wavelengths than the primary electron donor P700. We investigated the relative quantum yields of photochemical charge separation and fluorescence as a function of excitation wavelength and temperature in trimeric and monomeric photosystem I complexes of this cyanobacterium. The monomeric complexes are characterized by a reduced content of the C-719 spectral form. At room temperature, an analysis of the wavelength dependence of P700 oxidation indicated that all absorbed light, even of wavelengths of up to 750 nm, has the same probability of resulting in a stable P700 photooxidation. Upon cooling from 295 K to 5 K, the nonselectively excited steady-state emission increased by 11- and 16-fold in the trimeric and monomeric complexes, respectively, whereas the quantum yield of P700 oxidation decreased 2.2- and 1.7-fold. Fluorescence excitation spectra at 5 K indicate that the fluorescence quantum yield further increases upon scanning of the excitation wavelength from 690 nm to 710 nm, whereas the quantum yield of P700 oxidation decreases significantly upon excitation at wavelengths longer than 700 nm. Based on these findings, we conclude that at 5 K the excited state is not equilibrated over the antenna before charge separation occurs, and that approximately 50% of the excitations reach P700 before they become irreversibly trapped on one of the long-wavelength antenna pigments. Possible spatial organizations of the long-wavelength antenna pigments in the three-dimensional structure of photosystem I are discussed.


Subject(s)
Chlorophyll/metabolism , Cyanobacteria/metabolism , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Energy Transfer , Macromolecular Substances , Oxidation-Reduction , Spectrometry, Fluorescence , Spectrophotometry , Temperature , Thermodynamics
4.
Photosynth Res ; 48(1-2): 239-46, 1996 May.
Article in English | MEDLINE | ID: mdl-24271304

ABSTRACT

Isolated trimeric Photosystem I complexes of the cyanobacterium Synechococcus elongatus have been studied with absorption spectroscopy and site-selective polarized fluorescence spectroscopy at cryogenic temperatures. The 4 K absorption spectrum exhibits a clear and distinct peak at 710 nm and shoulders near 720, 698 and 692 nm apart from the strong absorption profile located at 680 nm. Deconvoluting the 4 K absorption spectrum with Gaussian components revealed that Synechococcus elongatus contains two types of long-wavelength pigments peaking at 708 nm and 719 nm, which we denoted C-708 and C-719, respectively. An estimate of the oscillator strengths revealed that Synechococcus elongatus contains about 4-5 C-708 pigments and 5-6 C-719 pigments. At 4 K and for excitation wavelengths shorter than 712 nm, the emission maximum appeared at 731 nm. For excitation wavelengths longer than 712 nm, the emission maximum shifted to the red, and for excitation in the far red edge of the absorption spectrum the emission maximum was observed 10-11 nm to the red with respect to the excitation wavelength, which indicates that the Stokes shift of C-719 is 10-11 nm. The fluorescence anisotropy, as calculated in the emission maximum, reached a maximal anisotropy of r=0.35 for excitation in the far red edge of the absorption spectrum (at and above 730 nm), and showed a complicated behavior for excitation at shorter wavelengths. The results suggest efficient energy transfer routes between C-708 and C-719 pigments and also among the C-719 pigments.

5.
Photosynth Res ; 45(1): 41-9, 1995 Jul.
Article in English | MEDLINE | ID: mdl-24301378

ABSTRACT

With the new method of anion exchange perfusion chromatography we have devised an extremely rapid technique to subfractionate spinach Photosystem I into its chlorophyll a containing core complex and various components of the Photosystem I light-harvesting antenna (LHC I). The isolation time for the LHC I subcomplexes following solubilisation of native Photosystem I was reduced from 50 h using traditional density centrifugation procedures down to only 10-25 min by perfusion chromatography. Within this very short period of isolation, LHC I has been obtained as subfractions highly enriched in Lhca2+3 (LHC I-680) and Lhca1+4 (LHC I-730). Moreover, other highly enriched subfractions of LHC I such as Lhca2, Lhca3 and Lhca1+2+4 were obtained where the later two populations have not previously been obtained in a soluble form and without the use of SDS. These various subfractions of the LHC I antenna have been characterised by absorption spectroscopy, 77 K fluorescence-spectroscopy and SDS-PAGE demonstrating their identities, functional intactness and purity. Furthermore, the analyses located a chlorophyll b pool to preferentially transfer its excitation energy to the low energy F735 chromophore, and located specifically the origin of the 730 nm fluorescence to the Lhca4 component. It was also revealed that Lhca2 and Lhca3 have identical light-harvesting properties. The isolated Photosystem I core complex showed high electron transport capacity (1535 µmoles O2 mg Chl(-1) h(-1)) and low fluorescence yield (0.4%) demonstrating its high functional integrity. The very rapid isolation procedure based upon perfusion chromatography should in a significant way facilitate the subfractionation of Photosystem I proteins and thereby allow more accurate functional and structural studies of individual components.

6.
FEBS Lett ; 339(1-2): 134-8, 1994 Feb 14.
Article in English | MEDLINE | ID: mdl-8313962

ABSTRACT

The excitation energy transfer between chlorophyll b (Chl b) and chlorophyll a (Chl a) in the isolated trimeric chlorophyll-a/b-binding protein complex of spinach photosystem 2 (LHC II) has been studied by femtosecond spectroscopy. In the main absorption band of Chl b the ground state recovery consists of two components of 0.5 ps and 2.0 ps, respectively. Also in the Chl a absorption band, at 665 nm, the ground state recovery is essentially bi-exponential. In this case is, however, the fastest relaxation lifetime is a 2.0 ps component followed by a slower component with a lifetime in the order of 10-20 ps. In the Chl b absorption band a more or less constant anisotropy of r = 0.2 was observed during the 3 ps the system was monitored. In the Chl a absorption band there was, however, a relaxation of the anisotropy from r = 0.3 to a quasi steady state level of r = 0.18 in about 1 ps. Since the 0.5 ps component is only seen upon selective excitation of Chl b we assign this component to the energy transfer between Chl b and Chl a. The other components most likely represents redistribution processes of energy among spectrally different forms of Chl a. The energy transfer process between Chl b and Chl a can well be explained by the Förster mechanism which also gives a calculated distance of 13 A between interacting chromophores. The organisation of chlorophylls in LHC II is discussed in view of the recent crystal structure data (1991) Nature 350, 130].


Subject(s)
Chlorophyll/metabolism , Energy Transfer , Photosynthetic Reaction Center Complex Proteins/metabolism , Plants/metabolism , Chlorophyll A , Fluorescence Polarization , Light-Harvesting Protein Complexes , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...