Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Resusc Plus ; 5: 100081, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34223347

ABSTRACT

OBJECTIVE: To describe the clinical trial "Vasopressin and Methylprednisolone for In-Hospital Cardiac Arrest" (VAM-IHCA). METHODS: The VAM-IHCA trial is an investigator-initiated, multicenter, randomized, placebo-controlled, parallel group, double-blind, superiority trial of vasopressin and methylprednisolone during adult in-hospital cardiac arrest. The study drugs consist of 40 mg methylprednisolone and 20 IU of vasopressin given as soon as possible after the first dose of adrenaline. Additional doses of vasopressin (20 IU) will be administered after each adrenaline dose for a maximum of four doses (80 IU).The primary outcome is return of spontaneous circulation and key secondary outcomes include survival and survival with a favorable neurological outcome at 30 days. 492 patients will be enrolled. The trial was registered at the EU Clinical Trials Register (EudraCT Number: 2017-004773-13) on Jan. 25, 2018 and ClinicalTrials.gov (Identifier: NCT03640949) on Aug. 21, 2018. RESULTS: The trial started in October 2018 and the last patient is anticipated to be included in January 2021. The primary results will be reported after 3-months follow-up and are, therefore, anticipated in mid-2021. CONCLUSION: The current article describes the design of the VAM-IHCA trial. The results from this trial will help clarify whether the combination of vasopressin and methylprednisolone when administered during in-hospital cardiac arrest improves outcomes.

2.
Cardiovasc Diabetol ; 16(1): 148, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29121919

ABSTRACT

BACKGROUND: Hypoglycemia is associated with increased mortality rate in patients with diabetes. The underlying mechanisms may involve reduced myocardial tolerance to ischemia and reperfusion (IR) or reduced capacity for ischemic preconditioning (IPC). As IPC is associated with increased myocardial glucose uptake (MGU) during reperfusion, cardioprotection is linked to glucose metabolism possibly by O-linked ß-N-acetylglucosamine (O-GlcNAc). We aimed to investigate the impact of hypoglycemia in hearts from animals with diabetes on myocardial IR tolerance, on the efficacy of IPC and whether modulations of MGU and O-GlcNAc levels are involved in the underlying mechanisms. METHODS: In a Langendorff model using diabetic ZDF (fa/fa) and non-diabetic (fa/+) rats (n = 6-7 in each group) infarct size (IS) was evaluated after 40 min of global ischemia and 120 min reperfusion during hypoglycemia [(glucose) = 3 mmol/l] and normoglycemia [(glucose) = 11 mmol/l]. Myocardial glucose uptake and O-GlcNAc levels were evaluated during reperfusion. IPC was induced by 2 × 5 min of global ischemia prior to index ischemia. RESULTS: IS increased in hearts from animals with (p < 0.01) and without (p < 0.01) diabetes during hypoglycemia compared to normoglycemia. IPC reduced IS during normoglycemia in both animals with (p < 0.01) and without (p < 0.01) diabetes. During hypoglycemia, however, IPC only reduced IS in hearts from animals with diabetes (p < 0.05). IPC increased MGU during reperfusion and O-GlcNAc levels in animals with diabetes during hypo- (MGU: p < 0.05, O-GlcNAc: p < 0.05) and normoglycemia (MGU: p < 0.01, O-GlcNAc: p < 0.05) and in animals without diabetes only during normoglycemia (MGU: p < 0.05, O-GlcNAc: p < 0.01). CONCLUSIONS: Hypoglycemia increases myocardial susceptibility to IR injury in hearts from animals with and without diabetes. In contrast to hearts from animals without diabetes, the hearts from animals with diabetes are amenable to cardioprotection during hypoglycemia. In parallel with IPC induced cardioprotection, MGU and O-GlcNAc levels increase suggesting that increased MGU and O-GlcNAc levels are involved in the mechanisms of IPC.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Hypoglycemia/pathology , Ischemic Preconditioning, Myocardial/methods , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Animals , Diabetes Mellitus, Type 2/blood , Heart/physiology , Hypoglycemia/blood , Hypoglycemia/complications , Isolated Heart Preparation/methods , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/etiology , Myocardium/metabolism , Rats , Rats, Zucker
SELECTION OF CITATIONS
SEARCH DETAIL
...