Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Laryngol Otol ; 135(8): 723-728, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34184623

ABSTRACT

OBJECTIVE: To analyse the correlations between olfactory psychophysical scores and the serum levels of D-dimer, C-reactive protein, ferritin, lactate dehydrogenase, procalcitonin and neutrophil-to-lymphocyte ratio in coronavirus disease 2019 patients. METHODS: Patients underwent psychophysical olfactory assessment with the Connecticut Chemosensory Clinical Research Center test, and determination of blood serum levels of the inflammatory markers D-dimer, C-reactive protein, ferritin, lactate dehydrogenase, procalcitonin and neutrophil-to-lymphocyte ratio within 10 days of the clinical onset of coronavirus disease 2019 and 60 days after. RESULTS: Seventy-seven patients were included in this study. D-dimer, procalcitonin, ferritin and neutrophil-to-lymphocyte ratio correlated significantly with severe coronavirus disease 2019. No significant correlations were found between baseline and 60-day Connecticut Chemosensory Clinical Research Center test scores and the inflammatory markers assessed. CONCLUSION: Olfactory disturbances appear to have little prognostic value in predicting the severity of coronavirus disease 2019 compared to D-dimer, ferritin, procalcitonin and neutrophil-to-lymphocyte ratio. The lack of correlation between the severity and duration of olfactory disturbances and serum levels of inflammatory markers seems to further suggest that the pathogenetic mechanisms underlying the loss of smell in coronavirus disease 2019 patients are related to local rather than systemic inflammatory factors.


Subject(s)
COVID-19/pathology , Olfaction Disorders/etiology , Aged , Biomarkers/blood , C-Reactive Protein/analysis , COVID-19/blood , COVID-19/complications , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Humans , Inflammation/blood , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Male , Middle Aged , Olfaction Disorders/blood , Olfaction Disorders/pathology , Procalcitonin/blood , Severity of Illness Index
2.
Rev Sci Instrum ; 89(2): 023304, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29495838

ABSTRACT

The SEPAGE diagnostic will detect charged particles (electrons, protons, and ions) accelerated in the interaction of the PETAL (PETawatt Aquitaine Laser) laser with its targets on the LMJ (Laser MegaJoule)-PETAL laser facility. SEPAGE will be equipped with a proton-radiography front detector and two Thomson parabolas (TP), corresponding to different ranges of the particle energy spectra: Above 0.1 MeV for electrons and protons in the low-energy channel, with a separation capability between protons and 12C6+ up to 20 MeV proton energy and above 8 MeV for the high-energy channel, with a separation capability between protons and 12C6+ up to 200 MeV proton kinetic energy. This paper presents the calibration of the SEPAGE's low-energy channel TP at the Tandem facility of Orsay (France) with proton beams between 3 and 22 MeV and carbon-ion beams from 5.8 to 84 MeV. The magnetic and electric fields' integrals were determined with an accuracy of 10-3 by combining the deflections measured at different energies with different target thicknesses and materials, providing different in-target energy losses of the beam particles and hence different detected energies for given beam energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...