Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chem Lab Med ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38912717

ABSTRACT

OBJECTIVES: Monoclonal gammopathies frequently associate with hemostatic alterations. Thrombotic events occur with high incidence particularly upon treatment, while in rarer cases hemorrhagic diathesis can be observed. The pathology of these tendencies could be caused by thrombocytopenia or hyperviscosity burden of circulating monoclonal antibodies. Studies also suggest interference of monoclonal antibodies with primary hemostasis. We isolated monoclonal whole IgG paraproteins from two myeloma patients to observe their effect on thrombin formation and fibrin polymerization. METHODS: Monoclonal whole IgG was prepared from sera of two newly diagnosed untreated multiple myeloma patients and control normal plasma samples. Fibrin formation was measured using thrombin time and dilute prothrombin time tests and thrombin formation was detected with a fluorimetric thrombin generation assay. In addition, molecular interactions were investigated by surface plasmon resonance (SPR). RESULTS: Thrombin time was prolonged upon addition of monoclonal IgG even at 30 g/L by 12 %, increasing up to 36 % at 60 g/L concentration. Dilute prothrombin time was prolonged by 20 % even at 30 g/L. Thrombin generation assay indicated an impairment in thrombin formation at the presence of monoclonal IgG compared to polyclonal at equivalent concentration. By an SPR assay we determined that both clonality IgG preparations interacted with fibrinogen, however interaction with human thrombin was only detected with monoclonal immunoglobulins (KD=1.03 × 10-7 M). CONCLUSIONS: Here we provide evidence that isolated monoclonal whole IgG from myeloma patients can impair both fibrin and thrombin formation and we demonstrate by SPR assay that it interacts with components of the final phase of the coagulation system.

2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474138

ABSTRACT

Antithrombin (AT) is the major plasma inhibitor of thrombin (FIIa) and activated factor X (FXa), and antithrombin deficiency (ATD) is one of the most severe thrombophilic disorders. In this study, we identified nine novel AT mutations and investigated their genotype-phenotype correlations. Clinical and laboratory data from patients were collected, and the nine mutant AT proteins (p.Arg14Lys, p.Cys32Tyr, p.Arg78Gly, p.Met121Arg, p.Leu245Pro, p.Leu270Argfs*14, p.Asn450Ile, p.Gly456delins_Ala_Thr and p.Pro461Thr) were expressed in HEK293 cells; then, Western blotting, N-Glycosidase F digestion, and ELISA were used to detect wild-type and mutant AT. RT-qPCR was performed to determine the expression of AT mRNA from the transfected cells. Functional studies (AT activity in the presence and in the absence of heparin and heparin-binding studies with the surface plasmon resonance method) were carried out. Mutations were also investigated by in silico methods. Type I ATD caused by altered protein synthesis (p.Cys32Tyr, p.Leu270Argfs*14, p.Asn450Ile) or secretion disorder (p.Met121Arg, p.Leu245Pro, p.Gly456delins_Ala_Thr) was proved in six mutants, while type II heparin-binding-site ATD (p.Arg78Gly) and pleiotropic-effect ATD (p.Pro461Thr) were suggested in two mutants. Finally, the pathogenic role of p.Arg14Lys was equivocal. We provided evidence to understand the pathogenic nature of novel SERPINC1 mutations through in vitro expression studies.


Subject(s)
Antithrombin III Deficiency , Antithrombins , Humans , Antithrombins/chemistry , HEK293 Cells , Anticoagulants , Heparin/metabolism , Mutation , Antithrombin III Deficiency/genetics
3.
Biomolecules ; 11(4)2021 04 08.
Article in English | MEDLINE | ID: mdl-33917853

ABSTRACT

Antithrombin (AT) is a serine protease inhibitor, its activity is highly accelerated by heparin. Mutations at the heparin-binding region lead to functional defect, type II heparin-binding site (IIHBS) AT deficiency. The aim of this study was to investigate and compare the molecular background of AT Budapest 3 (p.Leu131Phe, ATBp3), AT Basel (p.Pro73Leu), and AT Padua (p.Arg79His) mutations. Advanced in silico methods and heparin-binding studies of recombinant AT proteins using surface plasmon resonance method were used. Crossed immunoelectrophoresis and Differential Scanning Fluorimetry (NanoDSF) were performed in plasma samples. Heparin affinity of AT Padua was the lowest (KD = 1.08 × 10-6 M) and had the most severe consequences affecting the allosteric pathways of activation, moreover significant destabilizing effects on AT were also observed. KD values for AT Basel, ATBp3 and wild-type AT were 7.64 × 10-7 M, 2.15 × 10-8 M and 6.4 × 10-10 M, respectively. Heparin-binding of AT Basel was slower, however once the complex was formed the mutation had only minor effect on the secondary and tertiary structures. Allosteric activation of ATBp3 was altered, moreover decreased thermostability in ATBp3 homozygous plasma and increased fluctuations in multiple regions of ATBp3 were observed by in silico methods suggesting the presence of a quantitative component in the pathogenicity of this mutation due to molecular instability.


Subject(s)
Antithrombin III/metabolism , Heparin/metabolism , Antithrombin III/chemistry , Antithrombin III/genetics , Binding Sites , Female , Heparin/chemistry , Humans , Immunoelectrophoresis , Kinetics , Male , Molecular Dynamics Simulation , Polymorphism, Single Nucleotide , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Surface Plasmon Resonance
4.
Org Biomol Chem ; 18(40): 8161-8178, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33020786

ABSTRACT

Nucleoside and nucleic acid analogues are known to possess a considerable therapeutic potential. In this work, by coupling cysteine to nucleosides, we successfully synthesized compounds that may not only have interesting biological properties in their monomeric form, but can be used beyond that, for oligomerization, in order to produce new types of synthetic nucleic acids. We elaborated different strategies for the synthesis of cysteinyl nucleosides as monomers of cysteinyl nucleic acids using nucleophilic substitution or thiol-ene coupling as a synthetic tool, and utilised on two complementary nucleosides, uridine and adenosine. Dipeptidyl dinucleosides and pentameric cysteinyl uridine were prepared from the monomeric building blocks, which are the first members of a new class of peptide nucleic acids containing the entire ribofuranosyl nucleoside units bound to the peptide backbone.


Subject(s)
Nucleosides
SELECTION OF CITATIONS
SEARCH DETAIL
...