Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Biomech Biomed Engin ; 22(11): 981-996, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31074305

ABSTRACT

With the increasing use of Computer Aided Engineering, it has become vital to be able to evaluate the accuracy of numerical models. Specific methods such as CORA were developed to objectively evaluate the correlation between a physical test and a numerical simulation results in terms of parameter vs time. However, no metric has so far been developed for Force Vs Deflection (FvD) signals often used in crashworthiness and biomechanics. A unique method called the Minimum Area Discrepancy Method, or MADM, is proposed to address this deficiency. This new method initially calculates a parameter 'R' which represents the area between numerical model and the average physical test response and then divides it by the average area generated by the upper and lower test corridors, based on the same standard deviation. The parameter 'R' is then normalized between 0 (no correlation) and 1 (perfect correlation) to become the MADM correlation rating. The MADM method was then validated by comparing a one dimensional Finite Element (FE) model of a chest model, under 2 impact velocities, against reference Post Mortem Human Subject (PMHS) data. The MADM method was further used to improve the correlation of this thorax model, by varying model parameters and generating 81 model variations. Based on the MADM ratings, a set parameter values leading to the best fit was identified. The best fit exhibits a response significantly better than the original chest model. MADM is novel, unique, easy to use and fulfills an important gap in objectively evaluating FVD correlation responses. Abbreviations MADM Correlation rating value (Minimum Area Discrepancy Method) MADMn,m MADM correlation rating using a specific scaling value of 'n' and power rating 'm' FvD Force versus Displacement FvT Force versus Time DvT Displacement versus Time NM Numerical model PE Physical Experiment Amodel Area under the average signal and the Numerical Model Aupper Area under the average signal +1 standard deviation Alower Area under the average signal -1 standard deviation R Ratio between Amodel and the average of Aupper and Alower.


Subject(s)
Algorithms , Finite Element Analysis , Humans , Models, Biological , Thorax/physiology
2.
Article in English | MEDLINE | ID: mdl-23061569

ABSTRACT

Trauma during pregnancy especially occurring during car crashes leads to many foetal losses. Numerical modelling is widely used in car occupant safety issue and injury mechanisms analysis and is particularly adapted to the pregnant woman. Material modelling of the gravid uterus tissues is crucial for injury risk evaluation especially for the abruption placentae which is widely assumed as the leading cause of foetal loss. Experimental studies on placenta behaviour in tension are reported in the literature, but none in compression to the authors' knowledge. This lack of data is addressed in this study. To complement the already available experimental literature data on the placenta mechanical behaviour and characterise it in a compression loading condition, 80 indentation tests on fresh placentae are presented. Hyperelastic like mean experimental stress versus strain and corridors are exposed. The results of the experimental placenta indentations compared with the tensile literature results tend to show a quasi-symmetrical behaviour of the tissue. An inverse analysis using simple finite element models has permitted to propose parameters for an Ogden material model for the placenta which exhibits a realistic behaviour in both tension and compression.


Subject(s)
Placenta/physiology , Computer Simulation , Female , Finite Element Analysis , Humans , Pregnancy , Tensile Strength , Weight-Bearing
3.
J Biomech Eng ; 132(1): 014501, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20524749

ABSTRACT

Over the past decade, road safety research and impact biomechanics have strongly stimulated the development of anatomical human numerical models using the finite element (FE) approach. The good accuracy of these models, in terms of geometric definition and mechanical response, should now find new areas of application. We focus here on the use of such a model to investigate its potential when studying respiratory mechanics. The human body FE model used in this study was derived from the RADIOSS HUMOS model. Modifications first concerned the integration and interfacing of a user-controlled respiratory muscular system including intercostal muscles, scalene muscles, the sternocleidomastoid muscle, and the diaphragm and abdominal wall muscles. Volumetric and pressure measurement procedures for the lungs and both the thoracic and abdominal chambers were also implemented. Validation of the respiratory module was assessed by comparing a simulated maximum inspiration maneuver to volunteer studies in the literature. Validation parameters included lung volume changes, rib rotations, diaphragm shape and vertical deflexion, and intra-abdominal pressure variation. The HUMOS model, initially dedicated to road safety research, could be turned into a promising, realistic 3D model of respiration with only minor modifications.


Subject(s)
Abdomen/physiology , Lung/physiology , Models, Biological , Muscle Contraction/physiology , Respiratory Mechanics/physiology , Respiratory Muscles/physiology , Thorax/physiology , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...