Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(41): 10829-10833, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973890

ABSTRACT

We analyze the effects of an externally applied electric field on thermal fluctuations for a binary electrolyte fluid. We show that the fluctuating Poisson-Nernst-Planck (PNP) equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation result in enhanced charge transport via a mechanism distinct from the well-known enhancement of mass transport that accompanies giant fluctuations. Although the mass and charge transport occurs by advection by thermal velocity fluctuations, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity and a nonzero cation-anion diffusion coefficient. Specifically, we predict a nonzero cation-anion Maxwell-Stefan coefficient proportional to the square root of the salt concentration, a prediction that agrees quantitatively with experimental measurements. The renormalized or effective macroscopic equations are different from the starting PNP equations, which contain no cross-diffusion terms, even for rather dilute binary electrolytes. At the same time, for infinitely dilute solutions the renormalized electric conductivity and renormalized diffusion coefficients are consistent and the classical PNP equations with renormalized coefficients are recovered, demonstrating the self-consistency of the fluctuating hydrodynamics equations. Our calculations show that the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, while elucidating the physical origins of these corrections and generalizing straightforwardly to more complex multispecies electrolytes. Finally, we show that strong applied electric fields result in anisotropically enhanced "giant" velocity fluctuations and reduced fluctuations of salt concentration.

2.
Article in English | MEDLINE | ID: mdl-24827336

ABSTRACT

Capillary forces are involved in a variety of natural phenomena, ranging from droplet breakup to the physics of clouds. The forces from surface tension can also be exploited in industrial applications provided the length scales involved are small enough. Recent experimental investigations showed how to take advantage of capillarity to fold planar structures into three-dimensional configurations by selectively melting polymeric hinges joining otherwise rigid shapes. In this paper we use theoretical calculations to quantify the role of geometry and fluid wetting on the final folded state. Considering folding in two and three dimensions, studying both hydrophilic and hydrophobic situations with possible contact-angle hysteresis, and addressing the shapes to be folded to be successively infinite, finite, curved, kinked, and elastic, we are able to derive an overview of the geometrical parameter space available for capillary folding.

3.
Philos Trans A Math Phys Eng Sci ; 371(1982): 20120182, 2013 Jan 13.
Article in English | MEDLINE | ID: mdl-23185057

ABSTRACT

We discuss a new class of approaches for simulating multiscale kinetic problems, with particular emphasis on applications related to small-scale transport. These approaches are based on a decomposition of the kinetic description into an equilibrium part, which is described deterministically (analytically or numerically), and the remainder, which is described using a particle simulation method. We show that it is possible to derive evolution equations for the two parts from the governing kinetic equation, leading to a decomposition that is dynamically and automatically adaptive, and a multiscale method that seamlessly bridges the two descriptions without introducing any approximation. Our discussion pays particular attention to stochastic particle simulation methods that are typically used to simulate kinetic phenomena; in this context, these decomposition approaches can be thought of as control-variate variance-reduction formulations, with the nearby equilibrium serving as the control. Such formulations can provide substantial computational benefits in a broad spectrum of applications because a number of transport processes and phenomena of practical interest correspond to perturbations from nearby equilibrium distributions. In many cases, the computational cost reduction is sufficiently large to enable otherwise intractable simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...