Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166801, 2023 10.
Article in English | MEDLINE | ID: mdl-37419396

ABSTRACT

Over the last years, the incidence of melanoma, the deadliest form of skin cancer, has risen significantly. Nearly half of the melanoma patients exhibit the BRAFV600E mutation. Although the use of BRAF and MEK inhibitors (BRAFi and MEKi) showed an impressive success rate in melanoma patients, durability of response remains an issue because tumor quickly becomes resistant. Here, we generated and characterized Lu1205 and A375 melanoma cells resistant to vemurafenib (BRAFi). Resistant cells (Lu1205R and A375R) exhibit higher IC50 (5-6 fold increase) and phospho-ERK levels and 2-3 times reduced apoptosis than their sensitive parents (Lu1205S and A375S). Moreover, resistant cells are 2-3 times bigger, display a more elongated morphology and have a modulation of migration capacity. Interestingly, pharmacological inhibition of sphingosine kinases, that prevents sphingosine-1-phosphate production, reduces migration of Lu1205R cells by 50 %. In addition, although Lu1205R cells showed increased basal levels of the autophagy markers LC3II and p62, they have decreased autophagosome degradation and autophagy flux. Remarkably, expression of Rab27A and Rab27B, which are involved in the release of extracellular vesicles are dramatically augmented in resistant cells (i.e. 5-7 fold increase). Indeed, conditioned media obtained from Lu1205R cells increased the resistance to vemurafenib of sensitive cells. Hence, these results support that resistance to vemurafenib modulates migration and the autophagic flux and may be transferred to nearby sensitive melanoma cells by factors that are released to the extracellular milieu by resistant cells.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Vemurafenib/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Sulfonamides/pharmacology , Indoles/pharmacology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Protein Kinase Inhibitors/pharmacology , Autophagy
2.
Heliyon ; 9(5): e15656, 2023 May.
Article in English | MEDLINE | ID: mdl-37144208

ABSTRACT

Neuroblastoma, the most common extracranial solid tumor occurring in childhood, originates from the aberrant proliferation of neural crest cells. Accordingly, the mechanism underling neuronal differentiation could provide new strategies for neuroblastoma treatment. It is well known that neurite outgrowth could be induced by Angiotensin II (Ang II) AT2 receptors; however, the signaling mechanism and its possible interaction with NGF (neural growth factor) receptors remain unclear. Here, we show that Ang II and CGP42112A (AT2 receptor agonist) promote neuronal differentiation by inducing neurite outgrowth and ßIII-tubulin expression in SH-SY5Y neuroblastoma cells. In addition, we demonstrate that treatment with PD123319 (AT2 receptor antagonist) reverts Ang II or CGP42112A-induced differentiation. By using specific pharmacological inhibitors we established that neurite outgrowth induced by CGP42112A requires the activation of MEK (mitogen-activated protein kinase kinase), SphK (sphingosine kinase) and c-Src but not PI3K (phosphatidylinositol 3-kinase). Certainly, CGP42112A stimulated a rapid and transient (30 s, 1 min) phosphorylation of c-Src at residue Y416 (indicative of activation), following by a Src deactivation as indicated by phosphorylation of Y527. Moreover, inhibition of the NGF receptor tyrosine kinase A (TrkA) reduced neurite outgrowth induced by Ang II and CGP42112A. In summary, we demonstrated that AT2 receptor-stimulated neurite outgrowth in SH-SY5Y cells involves the induction of MEK, SphK and c-Src and suggests a possible transactivation of TrkA. In that regard, AT2 signaling pathway is a key player in neuronal differentiation and might be a potential target for therapeutic treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...