Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Hum Vaccin Immunother ; 20(1): 2347019, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38807261

ABSTRACT

Influenza A viruses pose a significant threat to global health, impacting both humans and animals. Zoonotic transmission, particularly from swine and avian species, is the primary source of human influenza outbreaks. Notably, avian influenza viruses of the H5N1, H7N9, and H9N2 subtypes are of pandemic concern through their global spread and sporadic human infections. Preventing and controlling these viruses is critical due to their high threat level. Vaccination remains the most effective strategy for influenza prevention and control in humans, despite varying vaccine efficacy across strains. This review focuses specifically on pandemic preparedness for avian influenza viruses. We delve into vaccines tested in animal models and summarize clinical trials conducted on H5N1, H7N9, and H9N2 vaccines in humans.


Subject(s)
Birds , Influenza Vaccines , Influenza in Birds , Influenza, Human , Pandemics , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Pandemics/prevention & control , Vaccine Development , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/immunology , Clinical Trials as Topic , Disease Models, Animal , Vaccination , Pandemic Preparedness
2.
J Virol ; 98(5): e0054924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38624241

ABSTRACT

As an Argentine scientist, the defunding of CONICET and INTA feels like a blow to progress and our future. Despite free education, these cuts force talented researchers to seek opportunities abroad. Argentina's history of scientific achievement, from Nobel Prizes to COVID-19 vaccines, is at risk. Defunding science weakens our ability to solve problems and compete globally.


Subject(s)
Biomedical Research , Humans , Argentina , Biomedical Research/economics , Biomedical Research/education , Science/economics , Science/education , Brain Drain
3.
J Virol ; 98(3): e0170323, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38353535

ABSTRACT

The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.


Subject(s)
Influenza A virus , Nucleocapsid Proteins , Orthomyxoviridae Infections , Swine Diseases , Animals , Hemagglutinins , Influenza A virus/classification , Influenza A virus/genetics , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Reassortant Viruses/genetics , Swine , United States , Nucleocapsid Proteins/metabolism
4.
NPJ Vaccines ; 9(1): 45, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409236

ABSTRACT

Influenza B virus (FLUBV) poses a significant infectious threat, with frequent vaccine mismatch limiting its effectiveness. Our previous work investigated the safety and efficacy of modified live attenuated FLUBV vaccines with rearranged genomes (FluB-RAM and FluB-RANS) or a temperature-sensitive PB1 segment with a C-terminal HA tag (FluB-att). In this study, we compared the immune responses of female and male DBA/2J mice vaccinated with these vaccines, including versions containing a chimeric HA segment with an N-terminal IgA-inducing peptide (IGIP). Importantly, both recombinant viruses with and without IGIP remained genetically stable during egg passage. We found that introducing IGIP strengthened vaccine attenuation, particularly for FluB-RAM/IGIP. Prime-boost vaccination completely protected mice against lethal challenge with a homologous FLUBV strain. Notably, recombinant viruses induced robust neutralizing antibody responses (hemagglutination inhibition titers ≥40) alongside antibodies against NA and NP. Interestingly, female mice displayed a consistent trend of enhanced humoral and cross-reactive IgG and IgA responses against HA, NA, and NP compared to male counterparts, regardless of the vaccine used. However, the presence of IGIP generally led to lower anti-HA responses but higher anti-NA and anti-NP responses, particularly of the IgA isotype. These trends were further reflected in mucosal and serological responses two weeks after challenge, with clear distinctions based on sex, vaccine backbone, and IGIP inclusion. These findings hold significant promise for advancing the development of universal influenza vaccines.

5.
PLoS Pathog ; 20(2): e1012026, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377132

ABSTRACT

Influenza A virus (FLUAV) infects a wide range of hosts and human-to-swine spillover events are frequently reported. However, only a few of these human viruses have become established in pigs and the host barriers and molecular mechanisms driving adaptation to the swine host remain poorly understood. We previously found that infection of pigs with a 2:6 reassortant virus (hVIC/11) containing the hemagglutinin (HA) and neuraminidase (NA) gene segments from the human strain A/Victoria/361/2011 (H3N2) and internal gene segments of an endemic swine strain (sOH/04) resulted in a fixed amino acid substitution in the HA (A138S, mature H3 HA numbering). In silico analysis revealed that S138 became predominant among swine H3N2 virus sequences deposited in public databases, while 138A predominates in human isolates. To understand the role of the HA A138S substitution in the adaptation of a human-origin FLUAV HA to swine, we infected pigs with the hVIC/11A138S mutant and analyzed pathogenesis and transmission compared to hVIC/11 and sOH/04. Our results showed that the hVIC/11A138S virus had an intermediary pathogenesis between hVIC/11 and sOH/04. The hVIC/11A138S infected the upper respiratory tract, right caudal, and both cranial lobes while hVIC/11 was only detected in nose and trachea samples. Viruses induced a distinct expression pattern of various pro-inflammatory cytokines such as IL-8, TNF-α, and IFN-ß. Flow cytometric analysis of lung samples revealed a significant reduction of porcine alveolar macrophages (PAMs) in hVIC/11A138S-infected pigs compared to hVIC/11 while a MHCIIlowCD163neg population was increased. The hVIC/11A138S showed a higher affinity for PAMs than hVIC/11, noted as an increase of infected PAMs in bronchoalveolar lavage fluid (BALF), and showed no differences in the percentage of HA-positive PAMs compared to sOH/04. This increased infection of PAMs led to an increase of granulocyte-monocyte colony-stimulating factor (GM-CSF) stimulation but a reduced expression of peroxisome proliferator-activated receptor gamma (PPARγ) in the sOH/04-infected group. Analysis using the PAM cell line 3D4/21 revealed that the A138S substitution improved replication and apoptosis induction in this cell type compared to hVIC/11 but at lower levels than sOH/04. Overall, our study indicates that adaptation of human viruses to the swine host involves an increased affinity for the lower respiratory tract and alveolar macrophages.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza A virus , Humans , Animals , Swine , Influenza A Virus, H3N2 Subtype/genetics , Macrophages, Alveolar , Amino Acids , Hemagglutinins , Nose
6.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328128

ABSTRACT

Current influenza A vaccines fall short, leaving both humans and animals vulnerable. To address this issue, we have developed attenuated modified live virus (MLV) vaccines against influenza using genome rearrangement techniques targeting the internal gene segments of FLUAV. The rearranged M2 (RAM) strategy involves cloning the M2 ORF downstream of the PB1 ORF in segment 2 and incorporating multiple early stop codons within the M2 ORF in segment 7. Additionally, the IgA-inducing protein (IGIP) coding region was inserted into the HA segment to further attenuate the virus and enhance protective mucosal responses. RAM-IGIP viruses exhibit similar growth rates to wild type (WT) viruses in vitro and remain stable during multiple passages in cells and embryonated eggs. The safety, immunogenicity, and protective efficacy of the RAM-IGIP MLV vaccine against the prototypical 2009 pandemic H1N1 strain A/California/04/2009 (H1N1) (Ca/04) were evaluated in Balb/c mice and compared to a prototypic cold-adapted live attenuated virus vaccine. The results demonstrate that the RAM-IGIP virus exhibits attenuated virulence in vivo. Mice vaccinated with RAM-IGIP and subsequently challenged with an aggressive lethal dose of the Ca/04 strain exhibited complete protection. Analysis of the humoral immune response revealed that the inclusion of IGIP enhanced the production of neutralizing antibodies and augmented the antibody-dependent cellular cytotoxicity response. Similarly, the RAM-IGIP potentiated the mucosal immune response against various FLUAV subtypes. Moreover, increased antibodies against NP and NA responses were observed. These findings support the development of MLVs utilizing genome rearrangement strategies in conjunction with the incorporation of immunomodulators. IMPORTANCE: Current influenza vaccines offer suboptimal protection, leaving both humans and animals vulnerable. Our novel attenuated MLV vaccine, built by rearranging FLUAV genome segments and incorporating the IgA-inducing protein, shows promising results. This RAM-IGIP vaccine exhibits safe attenuation, robust immune responses, and complete protection against lethal viral challenge in mice. Its ability to stimulate broad-spectrum humoral and mucosal immunity against diverse FLUAV subtypes makes it a highly promising candidate for improved influenza vaccines.

7.
Microbiol Spectr ; 12(3): e0338623, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38299860

ABSTRACT

Since the 1990s, endemic North American swine influenza A viruses (swFLUAVs) contained an internal gene segment constellation, the triple reassortment internal gene (TRIG) cassette. In 2009, the H1N1 pandemic (pdmH1N1) virus spilled back into swine but did not become endemic. However, the pdmH1N1 contributed the matrix gene (pdmM) to the swFLUAVs circulating in the pig population, which replaced the classical swine matrix gene (swM) found in the TRIG cassette, suggesting the pdmM has a fitness benefit. Others have shown that swFLUAVs containing the pdmM have greater transmission efficiency compared to viruses containing the swM gene segment. We hypothesized that the matrix (M) gene could also affect disease and utilized two infection models, resistant BALB/c and susceptible DBA/2 mice, to assess pathogenicity. We infected BALB/c and DBA/2 mice with H1 and H3 swFLUAVs containing the swM or pdmM and measured lung virus titers, morbidity, mortality, and lung histopathology. H1 influenza strains containing the pdmM gene caused greater morbidity and mortality in resistant and susceptible murine strains, while H3 swFLUAVs caused no clinical disease. However, both H1 and H3 swFLUAVs containing the pdmM replicated to higher viral titers in the lungs and pdmM containing H1 viruses induced greater histological changes compared to swM H1 viruses. While the surface glycoproteins and other gene segments may contribute to swFLUAV pathogenicity in mice, these data suggest that the origin of the matrix gene also contributes to pathogenicity of swFLUAV in mice, although we must be cautious in translating these conclusions to their natural host, swine. IMPORTANCE: The 2009 pandemic H1N1 virus rapidly spilled back into North American swine, reassorting with the already genetically diverse swFLUAVs. Notably, the M gene segment quickly replaced the classical M gene segment, suggesting a fitness benefit. Here, using two murine models of infection, we demonstrate that swFLUAV isolates containing the pandemic H1N1 origin M gene caused increased disease compared to isolates containing the classical swine M gene. These results suggest that, in addition to other influenza virus gene segments, the swFLUAV M gene segment contributes to pathogenesis in mammals.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Swine , Mice , Animals , Humans , Influenza A Virus, H1N1 Subtype/genetics , Disease Models, Animal , Mice, Inbred DBA , Orthomyxoviridae Infections/pathology , Mammals
8.
Methods Mol Biol ; 2733: 47-74, 2024.
Article in English | MEDLINE | ID: mdl-38064026

ABSTRACT

Influenza A (FLUAV) and influenza B (FLUBV) viruses are human and/or animal pathogens widely studied due to their importance to public health and animal production. Both FLUAV and FLUBV possess a genome composed of eight viral gene segments. For reverse genetics of influenza viruses, transcription of the mRNA for the viral proteins is typically done from a plasmid encoding an RNA polymerase II (pol II) promoter element upstream of cloned viral cDNA and expressed like host mRNA. On the other side, the synthesis of the negative-sense, single-stranded, uncapped vRNAs can be accomplished by the host's RNA polymerase I (pol I). The reverse genetics for influenza has allowed the manipulation of influenza genomes incorporating heterogeneous sequences into different segments of the influenza genome, such as reporter genes. In this chapter, we outline the protocol from the generation of reverse genetic plasmid that can be applied for the cloning of any of the segments of FLUAV or FLUBV. Furthermore, we describe a protocol for generating FLUAV or FLUBV recombinant viruses carrying Nanoluciferase (NLuc) in the PB1 gene using reverse genetics. Finally, we delineate a microneutralization protocol using FLUAV-NLuc or FLUBV-NLuc viruses optimized for the use of antibodies from different sources (mice, ferrets, avian, etc.), which provides a more sensitive, reliable, and avidity-independent method to assess the presence of neutralizing antibodies against FLUAV or FLUBV.


Subject(s)
Influenza A virus , Influenza, Human , Animals , Humans , Mice , Reverse Genetics/methods , Ferrets/genetics , Influenza B virus/genetics , Influenza A virus/genetics , RNA, Messenger
9.
J Virol ; 97(10): e0074323, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37800947

ABSTRACT

IMPORTANCE: Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.


Subject(s)
Antigenic Drift and Shift , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Coturnix , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/virology , Poultry
10.
Viruses ; 15(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37896808

ABSTRACT

Swine influenza is a respiratory disease that affects the pork industry and is a public health threat. It is caused by type A influenza virus (FLUAV), which continuously undergoes genetic and antigenic variations. A large amount of information regarding FLUAV in pigs is available worldwide, but it is limited in Latin America. The HA sequences of H1 subtype FLUAV-positive samples obtained from pigs in Colombia between 2008-2021 were analyzed using sequence-based antigenic cartography and N-Glycosylation analyses. Of the 12 predicted global antigenic groups, Colombia contained five: four corresponding to pandemic strains and one to the classical swine H1N1 clade. Circulation of these clusters was observed in some regions during specific years. Ca2 was the immunodominant epitope among Colombian viruses. The counts of N-Glycosylation motifs were associated with the antigenic cluster ranging from three to five. The results show for the first time the existence of antigenic diversity of FLUAV in Colombia and highlight the impact of spatial and temporal factors on this diversity. This study provides information about FLUAV variability in pigs under natural conditions in the absence of vaccination and emphasizes the need for surveillance of its phylogenetic and antigenic characteristics.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Swine , Animals , Humans , Colombia/epidemiology , Phylogeny , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Antigenic Variation , Swine Diseases/epidemiology
11.
Front Vet Sci ; 10: 1182550, 2023.
Article in English | MEDLINE | ID: mdl-37323837

ABSTRACT

Introduction of influenza A viruses (FLUAV) into poultry from waterfowl is frequent, producing economic burden and increasing the probability of human infections. We have previously described the presence of FLUAV in wild birds in Argentina with unique evolutionary trajectories belonging to a South American lineage different from the North American and Eurasian lineages. Adaptability of this South American lineage FLUAV to poultry species is still poorly understood. In the present report, we evaluated the capacity of an H4N2 FLUAV from the South American lineage to adapt to chickens after low number of passages. We found that five mutations were acquired after five passages in 3-days-old chickens. These mutations produced a virus with better infectivity in ex vivo trachea explants but overall lower infection in lung explants. Infection of 3-week-old chickens persisted for a longer period and was detected in more tissues than the parental virus, suggesting adaptation of the H4N2 influenza A virus to chicken.

13.
Proc Natl Acad Sci U S A ; 120(17): e2208718120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068231

ABSTRACT

The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies/genetics , Epistasis, Genetic , Hemagglutinin Glycoproteins, Influenza Virus , Influenza Vaccines/genetics , Hemagglutinins , Influenza, Human/genetics , Influenza, Human/prevention & control
14.
Virus Evol ; 9(1): vead015, 2023.
Article in English | MEDLINE | ID: mdl-36993794

ABSTRACT

Influenza A viruses (IAVs) of the H1N1 classical swine lineage became endemic in North American swine following the 1918 pandemic. Additional human-to-swine transmission events after 1918, and a spillover of H1 viruses from wild birds in Europe, potentiated a rapid increase in genomic diversity via reassortment between introductions and the endemic classical swine lineage. To determine mechanisms affecting reassortment and evolution, we conducted a phylogenetic analysis of N1 and paired HA swine IAV genes in North America between 1930 and 2020. We described fourteen N1 clades within the N1 Eurasian avian lineage (including the N1 pandemic clade), the N1 classical swine lineage, and the N1 human seasonal lineage. Seven N1 genetic clades had evidence for contemporary circulation. To assess antigenic drift associated with N1 genetic diversity, we generated a panel of representative swine N1 antisera and quantified the antigenic distance between wild-type viruses using enzyme-linked lectin assays and antigenic cartography. Within the N1 genes, the antigenic similarity was variable and reflected shared evolutionary history. Sustained circulation and evolution of N1 genes in swine had resulted in a significant antigenic distance between the N1 pandemic clade and the classical swine lineage. Between 2010 and 2020, N1 clades and N1-HA pairings fluctuated in detection frequency across North America, with hotspots of diversity generally appearing and disappearing within 2 years. We also identified frequent N1-HA reassortment events (n = 36), which were rarely sustained (n = 6) and sometimes also concomitant with the emergence of new N1 genetic clades (n = 3). These data form a baseline from which we can identify N1 clades that expand in range or genetic diversity that may impact viral phenotypes or vaccine immunity and subsequently the health of North American swine.

15.
Viruses ; 15(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36851697

ABSTRACT

Wild aquatic birds are considered the natural hosts of 16 HA (H1-H16) and 9 NA (N1-N9) subtypes of influenza A viruses (FLUAV) found in different combinations. H14 FLUAVs are rarely detected in nature. Since 2011, H14 FLUAVs have been consistently detected in Guatemala, leading to the largest collection of this subtype from a single country. All H14 FLUAVs in Guatemala were detected from blue-winged teal samples. In this report, 17 new full-length H14 FLUAV genome sequences detected from 2014 until 2019 were analyzed and compared to all published H14 sequences, including Guatemala, North America, and Eurasia. The H14 FLUAVs identified in Guatemala were mostly associated with the N3 subtype (n = 25), whereas the rest were paired with either N4 (n = 7), N5 (n = 4), N6 (n = 1), and two mixed infections (N3/N5 n = 2, and N2/N3 n = 1). H14 FLUAVs in Guatemala belong to a distinct H14 lineage in the Americas that is evolving independently from the Eurasian H14 lineage. Of note, the ORF of the H14 HA segments showed three distinct motifs at the cleavage site, two of these containing arginine instead of lysine in the first and fourth positions, not previously described in other countries. The effects of these mutations on virus replication, virulence, and/or transmission remain unknown and warrant further studies.


Subject(s)
Ducks , Influenza A virus , Animals , Guatemala , Ecology , Arginine , Influenza A virus/genetics
16.
Microbiol Spectr ; 11(1): e0287822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36475876

ABSTRACT

Commercial swine farms provide unique systems for interspecies transmission of influenza A viruses (FLUAVs) at the animal-human interface. Bidirectional transmission of FLUAVs between pigs and humans plays a significant role in the generation of novel strains that become established in the new host population. Active FLUAV surveillance was conducted for 2 years on a commercial pig farm in Southern Guatemala with no history of FLUAV vaccination. Nasal swabs (n = 2,094) from fattening pigs (6 to 24 weeks old) with respiratory signs were collected weekly from May 2016 to February 2018. Swabs were screened for FLUAV by real-time reverse transcriptase PCR (RRT-PCR), and full virus genomes of FLUAV-positive swabs were sequenced by next-generation sequencing (NGS). FLUAV prevalence was 12.0% (95% confidence interval [CI], 10.6% to 13.4%) with two distinct periods of high infection. All samples were identified as FLUAVs of the H1N1 subtype within the H1 swine clade 1A.3.3.2 and whose ancestors are the human origin 2009 H1N1 influenza pandemic virus (H1N1 pdm09). Compared to the prototypic reference segment sequence, 10 amino acid signatures were observed on relevant antigenic sites on the hemagglutinin. The Guatemalan swine-origin FLUAVs show independent evolution from other H1N1 pdm09 FLUAVs circulating in Central America. The zoonotic risk of these viruses remains unknown but strongly calls for continued FLUAV surveillance in pigs in Guatemala. IMPORTANCE Despite increased surveillance efforts, the epidemiology of FLUAVs circulating in swine in Latin America remains understudied. For instance, the 2009 H1N1 influenza pandemic strain (H1N1 pdm09) emerged in Mexico, but its circulation remained undetected in pigs. In Central America, Guatemala is the country with the largest swine industry. We found a unique group of H1N1 pdm09 sequences that suggests independent evolution from similar viruses circulating in Central America. These viruses may represent the establishment of a novel genetic lineage with the potential to reassort with other cocirculating viruses and whose zoonotic risk remains to be determined.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Swine , Humans , Animals , Influenza A virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Farms , Guatemala/epidemiology , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Swine Diseases/epidemiology , Phylogeny
17.
Nat Commun ; 13(1): 6846, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369504

ABSTRACT

Influenza A virus (IAV) genetic exchange through reassortment has the potential to accelerate viral evolution and has played a critical role in the generation of multiple pandemic strains. For reassortment to occur, distinct viruses must co-infect the same cell. The spatio-temporal dynamics of viral dissemination within an infected host therefore define opportunity for reassortment. Here, we used wild type and synonymously barcoded variant viruses of a pandemic H1N1 strain to examine the within-host viral dynamics that govern reassortment in guinea pigs, ferrets and swine. The first two species are well-established models of human influenza, while swine are a natural host and a frequent conduit for cross-species transmission and reassortment. Our results show reassortment to be pervasive in all three hosts but less frequent in swine than in ferrets and guinea pigs. In ferrets, tissue-specific differences in the opportunity for reassortment are also evident, with more reassortants detected in the nasal tract than the lower respiratory tract. While temporal trends in viral diversity are limited, spatial patterns are clear, with heterogeneity in the viral genotypes detected at distinct anatomical sites revealing extensive compartmentalization of reassortment and replication. Our data indicate that the dynamics of viral replication in mammals allow diversification through reassortment but that the spatial compartmentalization of variants likely shapes their evolution and onward transmission.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Guinea Pigs , Humans , Swine , Influenza A virus/genetics , Reassortant Viruses/genetics , Influenza A Virus, H1N1 Subtype/genetics , Ferrets , Mammals
18.
J Virol ; 96(22): e0148022, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36317880

ABSTRACT

Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Humans , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Influenza, Human/transmission , Mutation , Orthomyxoviridae Infections/transmission , Reassortant Viruses/genetics , Swine , Swine Diseases/virology
19.
PLoS Pathog ; 18(10): e1010734, 2022 10.
Article in English | MEDLINE | ID: mdl-36279276

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS2) affected the geriatric population. Among research models, Golden Syrian hamsters (GSH) are one of the most representative to study SARS2 pathogenesis and host responses. However, animal studies that recapitulate the effects of SARS2 in the human geriatric population are lacking. To address this gap, we inoculated 14 months old GSH with a prototypic ancestral strain of SARS2 and studied the effects on virus pathogenesis, virus shedding, and respiratory and gastrointestinal microbiome changes. SARS2 infection led to high vRNA loads in the nasal turbinates (NT), lungs, and trachea as well as higher pulmonary lesions scores later in infection. Dysbiosis throughout SARS2 disease progression was observed in the pulmonary microbial dynamics with the enrichment of opportunistic pathogens (Haemophilus, Fusobacterium, Streptococcus, Campylobacter, and Johnsonella) and microbes associated with inflammation (Prevotella). Changes in the gut microbial community also reflected an increase in multiple genera previously associated with intestinal inflammation and disease (Helicobacter, Mucispirillum, Streptococcus, unclassified Erysipelotrichaceae, and Spirochaetaceae). Influenza A virus (FLUAV) pre-exposure resulted in slightly more pronounced pathology in the NT and lungs early on (3 dpc), and more notable changes in lungs compared to the gut microbiome dynamics. Similarities among aged GSH and the microbiome in critically ill COVID-19 patients, particularly in the lower respiratory tract, suggest that GSHs are a representative model to investigate microbial changes during SARS2 infection. The relationship between the residential microbiome and other confounding factors, such as SARS2 infection, in a widely used animal model, contributes to a better understanding of the complexities associated with the host responses during viral infections.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Cricetinae , Animals , Humans , Aged , Infant , SARS-CoV-2 , Mesocricetus , Dysbiosis/pathology , Lung/pathology , Inflammation/pathology
20.
Pathogens ; 11(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36145399

ABSTRACT

The current diversity of influenza A viruses (IAV) circulating in swine is largely a consequence of human-to-swine transmission events and consequent evolution in pigs. However, little is known about the requirements for human IAVs to transmit to and subsequently adapt in pigs. Novel human-like H3 viruses were detected in swine herds in the U.S. in 2012 and have continued to circulate and evolve in swine. We evaluated the contributions of gene segments on the ability of these viruses to infect pigs by using a series of in vitro models. For this purpose, reassortant viruses were generated by reverse genetics (rg) swapping the surface genes (hemagglutinin-HA and neuraminidase-NA) and internal gene segment backbones between a human-like H3N1 isolated from swine and a seasonal human H3N2 virus with common HA ancestry. Virus growth kinetics in porcine intestinal epithelial cells (SD-PJEC) and in ex-vivo porcine trachea explants were significantly reduced by replacing the swine-adapted HA with the human seasonal HA. Unlike the human HA, the swine-adapted HA demonstrated more abundant attachment to epithelial cells throughout the swine respiratory tract by virus histochemistry and increased entry into SD-PJEC swine cells. The human seasonal internal gene segments improved replication of the swine-adapted HA at 33 °C, but decreased replication at 40 °C. Although the HA was crucial for the infectivity in pigs and swine tissues, these results suggest that the adaptation of human seasonal H3 viruses to swine is multigenic and that the swine-adapted HA alone was not sufficient to confer the full phenotype of the wild-type swine-adapted virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...