Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 203: 117532, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34419922

ABSTRACT

In this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (H2O2/solar, Fe3+-EDDHA/H2O2/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E. coli O157:H7 and Salmonella enteritidis) and five organic microcontaminants (OMCs: atrazine, azoxystrobin, buprofezin, procymidone and terbutryn) were monitored along the whole process. The three studied processes showed a high treatment capability (reaching microbial loads < 7 CFU/100 mL and 21-90 % of OMC reduction), robustness (based on 7 or 10 analysed batches for each treatment process) and high suitability for subsequent treated SFCWW safe reuse: non-phytotoxic towards Lactuca sativa and no bacterial regrowth during its storage for a week. The analysis of the harvested crop samples irrigated with treated SFCWW in all the studied processes showed an absence of microbial contamination (< limit of detection, LOD; i.e., < 1 CFU/99 g of lettuce and < 1 CFU/8 g of radish), a significant reduction of OMC uptake (in the range 40-60 % and > 90 % for solar treated and ozonated SFCWW, respectively) and bioaccumulation in both crops in comparison with the results obtained with untreated SFCWW. Moreover, the chlorophyll content in the harvested lettuces irrigated with SFCWW treated by Fe3+-EDDHA/H2O2/solar was twice than that irrigated with SFCWW treated by H2O2/solar and ozone, indicating the additional advantage of using Fe3+-EDDHA as an iron source to reduce the risk of iron chlorosis in crops. Finally, the chemical (dietary risk assessment for the combined exposure of the 5 OMCs) and quantitative microbiological risk assessment (QMRA) of the harvested crops showed the capability of the studied processes to reduce the risk associated with untreated SFCWW reuse by more than 50 % and more than 4 orders of magnitude, respectively.


Subject(s)
Anemia, Hypochromic , Escherichia coli O157 , Ozone , Agricultural Irrigation , Hydrogen Peroxide , Lactuca , Wastewater
2.
Sci Total Environ ; 710: 136312, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32050367

ABSTRACT

Conventional urban wastewater treatment plants (UWTPs) are poorly effective in the removal of most contaminants of emerging concern (CECs), including antibiotics, antibiotic resistant bacteria and antibiotic resistance genes (ARB&ARGs). These contaminants result in some concern for the environment and human health, in particular if UWTPs effluents are reused for crop irrigation. Recently, stakeholders' interest further increased in Europe, because the European Commission is currently developing a regulation on water reuse. Likely, conventional UWTPs will require additional advanced treatment steps to meet water quality limits yet to be officially established for wastewater reuse. Even though it seems that CECs will not be included in the proposed regulation, the aim of this paper is to provide a technical contribution to this discussion as well as to support stakeholders by recommending possible advanced treatment options, in particular with regard to the removal of CECs and ARB&ARGs. Taking into account the current knowledge and the precautionary principle, any new or revised water-related Directive should address such contaminants. Hence, this review paper gathers the efforts of a group of international experts, members of the NEREUS COST Action ES1403, who for three years have been constructively discussing the efficiency of the best available technologies (BATs) for urban wastewater treatment to abate CECs and ARB&ARGs. In particular, ozonation, activated carbon adsorption, chemical disinfectants, UV radiation, advanced oxidation processes (AOPs) and membrane filtration are discussed with regard to their capability to effectively remove CECs and ARB&ARGs, as well as their advantages and drawbacks. Moreover, a comparison among the above-mentioned processes is performed for CECs relevant for crop uptake. Finally, possible treatment trains including the above-discussed BATs are discussed, issuing end-use specific recommendations which will be useful to UWTPs managers to select the most suitable options to be implemented at their own facilities to successfully address wastewater reuse challenges.

3.
J Hazard Mater ; 378: 120737, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31202058

ABSTRACT

Solar photo-Fenton process in raceway pond reactors was investigated at neutral pH as a sustainable tertiary treatment of real urban wastewater. In particular, the effect on antibiotic resistance determinants was evaluated. An effective inactivation of different wild bacterial populations was achieved considering total and cefotaxime resistant bacteria. The detection limit (1 CFU mL-1) was achieved in the range 80-100 min (5.4-6.7 kJ L-1 of cumulative solar energy required) for Total Coliforms (TC) (40-60 min for resistant TC, 4.3-5.2 kJ L-1), 60-80 min (4.5-5.4 kJ L-1) for Escherichia coli (E. coli) (40 min for resistant E. coli, 4.1-4.7 kJ L-1) and 40-60 min (3.9-4.5 kJ L-1) for Enterococcus sp. (Entero) (30-40 min for resistant Entero, 3.2-3.8 kJ L-1) with 20 mg L-1 Fe2+ and 50 mg L-1 H2O2. Under these mild oxidation conditions, 7 out of the 10 detected antibiotics were effectively removed (60-100%). As the removal of antibiotic resistance genes (ARGs) is of concern, no conclusive results were obtained, as sulfonamide resistance gene was reduced to some extent (relative abundance <1), meanwhile class 1 integron intI1 and ß-lactam resistance genes were not affected. Accordingly, more research and likely more intensive oxidative conditions are needed for an efficient ARGs removal.


Subject(s)
Drug Resistance, Microbial/genetics , Hydrogen Peroxide , Iron , Solar Energy , Waste Disposal, Fluid/methods , Wastewater , Bacterial Load , DNA, Bacterial/genetics , Genes, Bacterial , Hydrogen-Ion Concentration , Sunlight , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...