Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
Biochem Genet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814383

ABSTRACT

The host immune response might confer differential vulnerability to SARS-CoV-2 infection. The Toll-like receptor 8 (TLR8), could participated for severe COVID-19 outcomes. To investigated the relationship of TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G with COVID-19 outcomes and with biochemical parameters. A cross-sectional study of 830 laboratory-confirmed COVID-19 patients was performed, and classified into mild, severe, critical, and deceased outcomes. The TLR8 rs3764879-C/G, rs3764880-A/G, and rs3761624-A/G polymorphisms were genotyped. A logistic regression analysis was performed to determinate the association with COVID-19. A stratified analysis was by alleles was done with clinical and metabolic markets. In all outcomes, men presented the highest ferritin levels compared to women (P < 0.001). LDH levels were significantly different between sex in mild (P = 0.003), severe (P < 0.001) and deceased (P = 0.01) COVID-19 outcomes. The GGG haplotype showed an Odds Ratio of 1.55 (Interval Confidence 95% 1.05-2.32; P = 0.03) in men. Among patients with severe outcome, we observed that the carriers of the GGG haplotype had lower Ferritin, C-reactive protein and LDH levels than the CAA carriers (P < 0.01). After further stratified by sex, these associations were also seen in the male patients, except for D-dimer. Interestingly, among men patients, we could observe associations between TLR8 haplotypes and Ferritin (P < 0.001), D-dimer (P = 0.04), C-reactive protein, and Lactate dehydrogenase in mild (P = 0.04) group. Our results suggest that even though TLR8 haplotypes show a significant association with COVID-19 outcomes, they are associated with clinical markers in COVID-19 severity.

2.
Front Immunol ; 15: 1335963, 2024.
Article in English | MEDLINE | ID: mdl-38601158

ABSTRACT

Introduction: Serine proteases play a critical role during SARS-CoV-2 infection. Therefore, polymorphisms of transmembrane protease serine 2 (TMPRSS2) and serpine family E member 1 (SERPINE1) could help to elucidate the contribution of variability to COVID-19 outcomes. Methods: To evaluate the genetic variants of the genes previously associated with COVID-19 outcomes, we performed a cross-sectional study in which 1536 SARS-CoV-2-positive participants were enrolled. TMPRSS2 (rs2070788, rs75603675, rs12329760) and SERPINE1 (rs2227631, rs2227667, rs2070682, rs2227692) were genotyped using the Open Array Platform. The association of polymorphisms with disease outcomes was determined by logistic regression analysis adjusted for covariates (age, sex, hypertension, type 2 diabetes, and obesity). Results: According to our codominant model, the GA genotype of rs2227667 (OR=0.55; 95% CI = 0.36-0.84; p=0.006) and the AG genotype of rs2227667 (OR=0.59; 95% CI = 0.38-0.91; p=0.02) of SERPINE1 played a protective role against disease. However, the rs2227692 T allele and TT genotype SERPINE1 (OR=1.45; 95% CI = 1.11-1.91; p=0.006; OR=2.08; 95% CI = 1.22-3.57; p=0.007; respectively) were associated with a decreased risk of death. Similarly, the rs75603675 AA genotype TMPRSS2 had an OR of 1.97 (95% CI = 1.07-3.6; p=0.03) for deceased patients. Finally, the rs2227692 T allele SERPINE1 was associated with increased D-dimer levels (OR=1.24; 95% CI = 1.03-1.48; p=0.02). Discussion: Our data suggest that the rs75603675 TMPRSS2 and rs2227692 SERPINE1 polymorphisms are associated with a poor outcome. Additionally, rs2227692 SERPINE1 could participate in hypercoagulable conditions in critical COVID-19 patients, and this genetic variant could contribute to the identification of new pharmacological targets and treatment strategies to block the inhibition of TMPRSS2 entry into SARS-CoV-2.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Humans , COVID-19/genetics , Serine Proteases , SARS-CoV-2 , Cross-Sectional Studies
3.
Theor Appl Genet ; 137(4): 76, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459215

ABSTRACT

The use of tomato rootstocks has helped to alleviate the soaring abiotic stresses provoked by the adverse effects of climate change. Lateral and adventitious roots can improve topsoil exploration and nutrient uptake, shoot biomass and resulting overall yield. It is essential to understand the genetic basis of root structure development and how lateral and adventitious roots are produced. Existing mutant lines with specific root phenotypes are an excellent resource to analyse and comprehend the molecular basis of root developmental traits. The tomato aerial roots (aer) mutant exhibits an extreme adventitious rooting phenotype on the primary stem. It is known that this phenotype is associated with restricted polar auxin transport from the juvenile to the more mature stem, but prior to this study, the genetic loci responsible for the aer phenotype were unknown. We used genomic approaches to define the polygenic nature of the aer phenotype and provide evidence that increased expression of specific auxin biosynthesis, transport and signalling genes in different loci causes the initiation of adventitious root primordia in tomato stems. Our results allow the selection of different levels of adventitious rooting using molecular markers, potentially contributing to rootstock breeding strategies in grafted vegetable crops, especially in tomato. In crops vegetatively propagated as cuttings, such as fruit trees and cane fruits, orthologous genes may be useful for the selection of cultivars more amenable to propagation.


Subject(s)
Indoleacetic Acids , Solanum lycopersicum , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Plant Breeding , Signal Transduction , Phenotype , Plant Roots
4.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473859

ABSTRACT

The use of gene-editing tools, such as zinc finger nucleases, TALEN, and CRISPR/Cas, allows for the modification of physiological, morphological, and other characteristics in a wide range of crops to mitigate the negative effects of stress caused by anthropogenic climate change or biotic stresses. Importantly, these tools have the potential to improve crop resilience and increase yields in response to challenging environmental conditions. This review provides an overview of gene-editing techniques used in plants, focusing on the cultivated tomatoes. Several dozen genes that have been successfully edited with the CRISPR/Cas system were selected for inclusion to illustrate the possibilities of this technology in improving fruit yield and quality, tolerance to pathogens, or responses to drought and soil salinity, among other factors. Examples are also given of how the domestication of wild species can be accelerated using CRISPR/Cas to generate new crops that are better adapted to the new climatic situation or suited to use in indoor agriculture.


Subject(s)
Gene Editing , Solanum lycopersicum , Gene Editing/methods , Genome, Plant , CRISPR-Cas Systems , Crops, Agricultural/genetics , Plant Breeding
5.
Planta ; 259(3): 66, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332379

ABSTRACT

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Subject(s)
Abscisic Acid , Robinia , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Robinia/genetics , Tetraploidy , Indoleacetic Acids/metabolism , Gene Expression Profiling , Pyruvates/metabolism , Plant Roots/metabolism
6.
Int J Mol Sci ; 24(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069364

ABSTRACT

Breast cancer is the most common type of cancer in women. Although current treatments can increase patient survival, they are rarely curative when the disease is advanced (metastasis). Therefore, there is an urgent need to develop new cytotoxic drugs with a high selectivity toward cancer cells. Since repurposing approved drugs for cancer therapy has been a successful strategy in recent years, in this study, we screened a library of antiviral piperazine-derived compounds as anticancer agents. The compounds included a piperazine ring and aryl urea functions, which are privileged structures present in several anti-breast cancer drugs. The selective cytotoxic activity of a set of thirty-four 4-acyl-2-substituted piperazine urea derivatives against MCF7 breast cancer cells and MCF 10A normal breast cells was determined. Compounds 31, 32, 35, and 37 showed high selective anticancer activity against breast cancer cells and were also tested against another common type of cancer, non-small cell lung cancer (A549 lung cancer cells versus MRC-5 lung normal cells). Compounds 35 and 37 also showed selectivity against lung cancer cells. These results suggest that compounds 35 and 37 may be promising hit compounds for the development of new anticancer agents.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Drug Repositioning , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Piperazine/pharmacology , Piperazine/chemistry , Urea/pharmacology , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Proliferation , Molecular Structure , MCF-7 Cells
7.
Curr Issues Mol Biol ; 45(12): 9768-9777, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38132456

ABSTRACT

The interleukin-17 (IL-17) has a crucial role during inflammation and has been associated with cardiovascular diseases, but its role in epigenetics is still poorly understood. Therefore, the aim of this study was to evaluate the DNA methylation status of the IL-17A gene promoter to establish whether it may represent a risk factor for subclinical atherosclerosis (SA) or clinical coronary artery disease (CAD). We included 38 patients with premature CAD (pCAD), 48 individuals with SA, and 43 healthy controls. Methylation in the CpG region of the IL-17A gene promoter was assessed via methylation-specific polymerase chain reaction (MSP). Individuals with SA showed increased methylation levels compared to healthy controls and pCAD patients, with p < 0.001 for both. Logistic regression analysis showed that high methylation levels represent a significant risk for SA (OR = 5.68, 95% CI = 2.38-14.03, p < 0.001). Moreover, low methylation levels of the IL-17A gene promoter DNA represent a risk for symptomatic pCAD when compared with SA patients (OR = 0.16, 95% CI = 0.06-0.41, p < 0.001). Our data suggest that the increased DNA methylation of the IL-17A gene promoter is a risk factor for SA but may be a protection factor for progression from SA to symptomatic CAD.

8.
Diseases ; 11(4)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37987281

ABSTRACT

Right atrial isomerism (RAI) is a complex entity with varying diagnostic and treatment outcomes due to its rarity. Treatment options range from palliative to corrective surgeries, resulting in heterogeneous outcomes. The aim of this study was to analyze the results obtained after cardiac surgery in patients with RAI. A retrospective study was conducted, including patients diagnosed with RAI who underwent cardiac surgery. Their follow-up was from 1 January 2010 to 31 March 2020. Demographic characteristics and perioperative conditions were described. Thirty-eight patients were included, the median age was 4 years (IQR 2-9.2) and 57.9% were men. The main diagnoses were atrioventricular canal (63.2%) and pulmonary stenosis (55.3%). The most common surgical procedures were modified Blalock-Taussig shunt (65.8%) and total cavopulmonary connection with an extracardiac conduit fenestrated without cardiopulmonary bypass (15.9%). We did not find any factors associated with negative outcomes in these patients. The overall survival was 86.8%, with a better outcome in those who did not require reintubation (log rank, p < 0.01). The survival of RAI was similar to other centers. Individuals with RAI should be evaluated rigorously to determine an adequate repair strategy, considering high morbidity and mortality.

9.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836718

ABSTRACT

Proton therapy allows the treatment of specific areas and avoids the surrounding tissues. However, this technique has uncertainties in terms of the distal dose fall-off. A promising approach to studying the proton range is the use of nanoparticles as proton-activatable agents that produce detectable signals. For this, we developed an iron oxide nanoparticle doped with Zn (IONP@Zn-cit) with a hydrodynamic size of 10 nm and stability in serum. Cytotoxicity, defined as half of the surveillance, was 100 µg Zn/mL in the U251 cell line. The effect on clonogenic cell death was tested after X-ray irradiation, which suggested a radioprotective effect of these nanoparticles at low concentrations (1-10 µg Zn/mL). To evaluate the production of positron emitters and prompt-gamma signals, IONP@Zn-cit was irradiated with protons, obtaining prompt-gamma signals at the lowest measured concentration (10 mg Zn/mL). Finally, 67Ga-IONP@Zn-cit showed accumulation in the liver and spleen and an accumulation in the tumor tissue of 0.95% ID/g in a mouse model of U251 cells. These results suggest the possibility of using Zn nanoparticles as proton-activatable agents to verify the range by prompt gamma detection and face the challenges of prompt gamma detection in a specific biological situation, opening different avenues to go forward in this field.


Subject(s)
Nanoparticles , Proton Therapy , Animals , Mice , Protons , Proton Therapy/methods , Zinc/pharmacology , Magnetic Iron Oxide Nanoparticles
10.
Planta ; 258(4): 76, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37670114

ABSTRACT

MAIN CONCLUSION: Root development is regulated by sucrose and light during early seedling establishment through changes in the auxin response and chromatin topology. Light is a key environmental signal that regulates plant growth and development. The impact of light on development is primarily analyzed in the above-ground tissues, but little is known about the mechanisms by which light shapes the architecture of underground roots. Our study shows that carbohydrate starvation during skotomorphogenesis is accompanied by compaction of nuclei in the root apical meristem, which prevents cell cycle progression and leads to irreversible root differentiation in the absence of external carbohydrates, as evidenced by the lack of DNA replication and increased numbers of nuclei with specific chromatin characteristics. In these conditions, induction of photomorphogenesis was unable to restore seedling growth, as overall root growth was compromised. The addition of carbohydrates, either locally or systemically by transferring seedlings to sugar-containing medium, led to the induction of adventitious root formation with rapid recovery of seedling growth. Conversely, transferring in vitro carbohydrate-grown seedlings from light to dark transiently promoted cell elongation and significantly reduced root meristem size, but did not primarily affect cell cycle kinetics. We show that, in the presence of sucrose, dark incubation does not affect zonation in the root apical meristem but leads to shortening of the proliferative and transition zones. Sugar starvation led to a rapid increase in lysine demethylation of histone H3 at position K9, which preceded a rapid decline in cell cycle activity and activation of cell differentiation. In conclusion, carbohydrates are required for cell cycle activity, epigenetics reprogramming and for postmitotic cell elongation and auxin-regulated response in the root apical meristem.


Subject(s)
Arabidopsis , Seedlings , Sucrose , Chromatin , Indoleacetic Acids
11.
Plants (Basel) ; 12(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631154

ABSTRACT

Cultivated tomato (Solanum lycopersicum L.) is one of the most important horticultural crops in the world. The optimization of culture media for callus formation and tissue regeneration of different tomato genotypes presents numerous biotechnological applications. In this work, we have analyzed the effect of different concentrations of zeatin and indole-3-acetic acid on the regeneration of cotyledon explants in tomato cultivars M82 and Micro-Tom. We evaluated regeneration parameters such as the percentage of callus formation and the area of callus formed, as well as the initiation percentage and the number of adventitious shoots. The best hormone combination produced shoot-like structures after 2-3 weeks. We observed the formation of leaf primordia from these structures after about 3-4 weeks. Upon transferring the regenerating micro-stems to a defined growth medium, it was possible to obtain whole plantlets between 4 and 6 weeks. This hormone combination was applied to other genotypes of S. lycopersicum, including commercial varieties and ancestral tomato varieties. Our method is suitable for obtaining many plantlets of different tomato genotypes from cotyledon explants in a very short time, with direct applications for plant transformation, use of gene editing techniques, and vegetative propagation of elite cultivars.

12.
J Environ Manage ; 344: 118476, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37413731

ABSTRACT

The accumulation in soil landfills of toxic and persistent lindane, widely used as an insecticide, triggers the risk of leaching with the concomitant contamination of surrounding rivers. Thus, viable remediation to eliminate in situ high concentrations of lindane in soil and water becomes an urgent demand. In this line, a simple and cost-effective composite is proposed, including the use of industrial wastes. It includes reductive and non-reductive base-catalyzed strategies to remove lindane in the media. A mixture of magnesium oxide (MgO) and activated carbon (AC) was selected for that purpose. The use of MgO provides a basic pH. In addition, the specific selected MgO forms double-layered hydroxides in water which permits the total adsorption of the main heavy metals in contaminated soils. AC provides adsorption microsites to hold the lindane and a reductive atmosphere that was increased when combined with the MgO. These properties trigger highly efficient remediation of the composite. It permits a complete elimination of lindane in the solution. In soils doped with lindane and heavy metals, it produces a rapid, complete, and stable elimination of lindane and immobilization of the metals. Finally, the composite tested in lindane-highly contaminated soils permits the "in situ" degradation of nearly 70% of the initial lindane. The proposed strategy opens a promising way to face this environmental issue with a simple, cost-effective composite to degrade lindane and fix heavy metals in contaminated soils.


Subject(s)
Metals, Heavy , Soil Pollutants , Magnesium Oxide , Hexachlorocyclohexane , Charcoal/chemistry , Soil Pollutants/chemistry , Metals, Heavy/chemistry , Soil/chemistry , Industrial Waste , Water
13.
J Microbiol Immunol Infect ; 56(5): 939-950, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37365052

ABSTRACT

BACKGROUND/PURPOSE(S): During a viral infection, the immune response is mediated by the toll-like receptors and myeloid differentiation Factor 88 (MyD88) that play an important role sensing infections such as SARS-CoV-2 which has claimed the lives of more than 6.8 million people around the world. METHODS: We carried out a cross-sectional with a population of 618 SARS-CoV-2-positive unvaccinated subjects and further classified based on severity: 22% were mild, 34% were severe, 26% were critical, and 18% were deceased. Toll Like Receptor 7 (TLR7) single-nucleotide polymorphisms (rs3853839, rs179008, rs179009, and rs2302267) and MyD88 (rs7744) were genotyped using TaqMan OpenArray. The association of polymorphisms with disease outcomes was performed by logistic regression analysis adjusted by covariates. RESULTS: A significant association of rs3853839 and rs7744 of the TLR7 and MyD88 genes, respectively, was found with COVID-19 severity. The G/G genotype of the rs3853839 TLR7 was associated with the critical outcome showing an Odd Ratio = 1.98 (95% IC = 1.04-3.77). The results highlighted an association of the G allele of MyD88 gene with severe, critical and deceased outcomes. Furthermore, in the dominant model (AG + GG vs. AA), we observed an Odd Ratio = 1.70 (95% CI = 1.02-2.86) with severe, Odd Ratio = 1.82 (95% CI = 1.04-3.21) with critical, and Odd Ratio = 2.44 (95% CI = 1.21-4.9) with deceased outcomes. CONCLUSION: To our knowledge this work represents an innovative report that highlights the significant association of TLR7 and MyD88 gene polymorphisms with COVID-19 outcomes and the possible implication of the MyD88 variant with D-dimer and IFN-α concentrations.


Subject(s)
COVID-19 , Toll-Like Receptor 7 , Humans , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Genetic Predisposition to Disease , Myeloid Differentiation Factor 88/genetics , Cross-Sectional Studies , COVID-19/genetics , SARS-CoV-2 , Genotype , Polymorphism, Single Nucleotide/genetics
14.
Int J Mol Sci ; 24(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36982461

ABSTRACT

High-density lipoproteins (HDLs) are known to enhance vascular function through different mechanisms, including the delivery of functional lipids to endothelial cells. Therefore, we hypothesized that omega-3 (n-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content of HDLs would improve the beneficial vascular effects of these lipoproteins. To explore this hypothesis, we performed a placebo-controlled crossover clinical trial in 18 hypertriglyceridemic patients without clinical symptoms of coronary heart disease who received highly purified EPA 460 mg and DHA 380 mg, twice a day for 5 weeks or placebo. After 5 weeks of treatment, patients followed a 4-week washout period before crossover. HDLs were isolated using sequential ultracentrifugation for characterization and determination of fatty acid content. Our results showed that n-3 supplementation induced a significant decrease in body mass index, waist circumference as well as triglycerides and HDL-triglyceride plasma concentrations, whilst HDL-cholesterol and HDL-phospholipids significantly increased. On the other hand, HDL, EPA, and DHA content increased by 131% and 62%, respectively, whereas 3 omega-6 fatty acids significantly decreased in HDL structures. In addition, the EPA-to-arachidonic acid (AA) ratio increased more than twice within HDLs suggesting an improvement in their anti-inflammatory properties. All HDL-fatty acid modifications did not affect the size distribution or the stability of these lipoproteins and were concomitant with a significant increase in endothelial function assessed using a flow-mediated dilatation test (FMD) after n-3 supplementation. However, endothelial function was not improved in vitro using a model of rat aortic rings co-incubated with HDLs before or after treatment with n-3. These results suggest a beneficial effect of n-3 on endothelial function through a mechanism independent of HDL composition. In conclusion, we demonstrated that EPA and DHA supplementation for 5 weeks improved vascular function in hypertriglyceridemic patients, and induced enrichment of HDLs with EPA and DHA to the detriment of some n-6 fatty acids. The significant increase in the EPA-to-AA ratio in HDLs is indicative of a more anti-inflammatory profile of these lipoproteins.


Subject(s)
Fatty Acids, Omega-3 , Animals , Rats , Arachidonic Acid , Cross-Over Studies , Dietary Supplements , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid/pharmacology , Endothelial Cells , Fatty Acids , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Lipoproteins , Triglycerides , Humans
15.
J Cardiovasc Dev Dis ; 10(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36975855

ABSTRACT

A cluster of three genes CELSR2, PSRC1, and SORT1 has been associated with cardiovascular diseases. Thus, the aim of this study was (i) to perform a systematic review and updated meta-analysis of the association of three polymorphisms (rs646776, rs599839, and rs464218) of this cluster with cardiovascular diseases, and (ii) to explore by PheWAS signals of the three SNPs in cardiovascular diseases and to evaluate the effect of rs599839 with tissue expression by in silico tools. Three electronic databases were searched to identify eligible studies. The meta-analysis showed that the rs599839 (allelic OR 1.19, 95% CI 1.13-1.26, dominant OR 1.22, 95% CI 1.06-1.39, recessive OR 1.23, 95% CI 1.15-1.32), rs646776 (allelic OR 1.46, 95% CI 1.17-1.82) polymorphisms showed an increased risk for cardiovascular diseases. PheWas analysis showed associations with coronary artery disease and total cholesterol. Our results suggest a possible involvement of the CELSR2-PSRC1-SORT1 cluster variants in the risk association of cardiovascular diseases, particularly coronary artery disease.

16.
Cells ; 12(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36831251

ABSTRACT

The TBX20 gene has a key role during cardiogenesis, and it has been related to epigenetic mechanisms in congenital heart disease (CHD). The purpose of this study was to assess the association between DNA methylation status and congenital septal defects. The DNA methylation of seven CpG sites in the TBX20 gene promoter was analyzed through pyrosequencing as a quantitative method in 48 patients with congenital septal defects and 104 individuals with patent ductus arteriosus (PDA). The average methylation was higher in patients than in PDA (p < 0.001). High methylation levels were associated with a higher risk of congenital septal defects (OR = 4.59, 95% CI = 1.57-13.44, p = 0.005). The ROC curve analysis indicated that methylation of the TBX20 gene could be considered a risk marker for congenital septal defects (AUC = 0.682; 95% CI = 0.58-0.77; p < 0.001). The analysis of environmental risk factors in patients with septal defects and PDA showed an association between the consumption of vitamins (OR = 0.10; 95% CI = 0.01-0.98; p = 0.048) and maternal infections (OR = 3.10; 95% CI = 1.26-7.60; p = 0.013). These results suggest that differences in DNA methylation of the TBX20 gene can be associated with septal defects.


Subject(s)
Ductus Arteriosus, Patent , Heart Defects, Congenital , T-Box Domain Proteins , Child , Humans , Epigenesis, Genetic , Heart Defects, Congenital/genetics , Promoter Regions, Genetic , Risk Factors , T-Box Domain Proteins/genetics
17.
J Chem Inf Model ; 63(4): 1157-1165, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36749172

ABSTRACT

We present an improved algorithm to solve the near-congruence problem for rigid molecules and clusters based on the iterative application of assignment and alignment steps with biased Euclidean costs. The algorithm is formulated as a quasi-local optimization procedure with each optimization step involving a linear assignment (LAP) and a singular value decomposition (SVD). The efficiency of the algorithm is increased by up to 5 orders of magnitude with respect to the original unbiased noniterative method and can be applied to systems with hundreds or thousands of atoms, outperforming all state-of-the-art methods published so far in the literature. The Fortran implementation of the algorithm is available as an open source library (https://github.com/qcuaeh/molalignlib) and is suitable to be used in global optimization methods for the identification of local minima or basins.

18.
Rev Esp Patol ; 56(1): 45-57, 2023.
Article in English | MEDLINE | ID: mdl-36599600

ABSTRACT

The treatment of head and neck and salivary gland tumours is complicated and is constantly evolving. Prognostic and predictive indicators of response to treatment are enormously valuable for designing individualized therapies, which justifies their research and validation. Some biomarkers, such as p16, Epstein-Barr virus, PD-L1, androgen receptors and HER-2, are already used routinely in clinical practice. These biomarkers, along with other markers that are currently under development, and the massively parallel sequencing of genes, ensure future advances in the treatment of these neoplasms. In this consensus, a group of experts in the diagnosis and treatment of tumours of the head and neck and salivary glands were selected by the Spanish Society of Pathology (Sociedad Española de Anatomía Patológica - SEAP) and the Spanish Society of Medical Oncology (Sociedad Española de Oncología Médica - SEOM) to evaluate the currently available information and propose a series of recommendations to optimize the determination and daily clinical use of biomarkers.


Subject(s)
Epstein-Barr Virus Infections , Head and Neck Neoplasms , Salivary Gland Neoplasms , Humans , Consensus , Herpesvirus 4, Human , Medical Oncology , Biomarkers, Tumor , Salivary Gland Neoplasms/diagnosis , Salivary Gland Neoplasms/genetics
19.
Plant J ; 114(1): 83-95, 2023 04.
Article in English | MEDLINE | ID: mdl-36700340

ABSTRACT

Reactive oxygen species (ROS) play a dual role in plant biology, acting as important signal transduction molecules and as toxic byproducts of aerobic metabolism that accumulate in cells upon exposure to different stressors and lead to cell death. In plants, root architecture is regulated by the distribution and intercellular flow of the phytohormone auxin. In this study, we identified ROS as an important modulator of auxin distribution and response in the root. ROS production is necessary for root growth, proper tissue patterning, cell growth, and lateral root (LR) induction. Alterations in ROS balance led to altered auxin distribution and response in SOD and RHD2 loss-of-function mutants. Treatment of Arabidopsis seedlings with additional sources of ROS (hydrogen peroxide) or an ROS production inhibitor (diphenylene iodonium) induced phenocopies of the mutants studied. Simultaneous application of auxin and ROS increased LR primordia induction, and PIN-FORMED protein immunolocalization further demonstrated the existing link between auxin and ROS in orchestrating cell division and auxin flux during root development. In Arabidopsis roots, genetic alterations in ROS balance led to defective auxin distribution and growth-related responses in roots. Exogenous hydrogen peroxide alters the establishment of the endogenous auxin gradient in the root meristem through regulation of PIN-FORMED polarity, while the simultaneous application of hydrogen peroxide and auxin enhanced LR induction in a dose- and position-dependent manner through activation of cell division.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Reactive Oxygen Species/metabolism , Indoleacetic Acids/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/metabolism , Hydrogen Peroxide/metabolism , Gene Expression Regulation, Plant , NADPH Oxidases/metabolism
20.
Rev. esp. patol ; 56(1): 45-57, Ene-Mar. 2023. tab, ilus
Article in English | IBECS | ID: ibc-214175

ABSTRACT

The treatment of head and neck and salivary gland tumours is complicated and is constantly evolving. Prognostic and predictive indicators of response to treatment are enormously valuable for designing individualized therapies, which justifies their research and validation. Some biomarkers, such as p16, Epstein–Barr virus, PD-L1, androgen receptors and HER-2, are already used routinely in clinical practice. These biomarkers, along with other markers that are currently under development, and the massively parallel sequencing of genes, ensure future advances in the treatment of these neoplasms.In this consensus, a group of experts in the diagnosis and treatment of tumours of the head and neck and salivary glands were selected by the Spanish Society of Pathology (Sociedad Española de Anatomía Patológica – SEAP) and the Spanish Society of Medical Oncology (Sociedad Española de Oncología Médica – SEOM) to evaluate the currently available information and propose a series of recommendations to optimize the determination and daily clinical use of biomarkers.(AU)


El tratamiento de los tumores de cabeza y cuello y de glándulas salivales es complejo, y evoluciona de forma constante. Los indicadores pronósticos y predictivos de respuesta al tratamiento son enormemente valiosos para diseñar terapias individualizadas, lo que justifica su investigación y validación. Algunos biomarcadores como p16, el virus de Epstein-Barr, PD-L1, los receptores de andrógenos o HER-2, ya se utilizan de manera rutinaria en la práctica clínica. Estos biomarcadores, junto con otros marcadores que están actualmente en desarrollo, y la secuenciación masiva de genes, aseguran los futuros avances en el tratamiento de estas neoplasias. En este consenso, un grupo de expertos en el diagnóstico y tratamiento de los tumores de cabeza y cuello y glándulas salivales seleccionado por la Sociedad Española de Anatomía Patológica (SEAP) y la Sociedad Española de Oncología Médica (SEOM) evalúan la información actualmente disponible y proponen una serie de recomendaciones para optimizar la determinación y utilización en la práctica clínica diaria de los biomarcadores.(AU)


Subject(s)
Humans , Male , Female , Biomarkers, Tumor , Head and Neck Neoplasms , Salivary Glands , Medical Oncology , Pathology, Clinical , Pathology , Consensus , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...