Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 16(1): 389, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891629

ABSTRACT

BACKGROUND: Strongyloides stercoralis is a soil-transmitted intestinal nematode with a complex life cycle that primarily affects humans, non-human primates, dogs, and occasionally cats. This study presents, to the best of our knowledge, the first case of S. stercoralis infection and its genotyping in a domestic dog from Argentina. METHODS: The patient was a female wired-haired Teckel dog exhibiting recurrent coughing. Coproparasitological analysis using the Baermann technique revealed the presence of rhabditiform larvae morphologically compatible with S. stercoralis. To confirm this finding, molecular diagnosis (18S ribosomal RNA) and analysis of the cox1 gene were performed. RESULTS: We identified a haplotype (HP20) that has previously only been related to S. stercoralis infection in dogs, but was found in the present study to be highly related to the haplotype (HP16) of a zoonotic variant and divergent from those previously described from human patients in Argentina. Furthermore, unlike in human cases following treatment with ivermectin, the dog was negative after moxidectin treatment according to polymerase chain reaction of the sampled faeces. CONCLUSIONS: This case report shows the importance of further investigation into potential transmission events and prevalences of S. stercoralis in dogs and humans in South America. The results reported here should also encourage future work that examines different scenarios of infection with S. stercoralis in dogs and humans with the aim of integrating clinical management, diagnosis, treatment and follow-up strategies in the quest for new approaches for the treatment of this disease in animals and humans. The findings support the adoption of a One Health approach, which recognizes the interconnectedness between animal and human health, in addressing parasitic infections such as strongyloidiasis.


Subject(s)
Strongyloides stercoralis , Strongyloidiasis , Humans , Animals , Dogs , Female , Strongyloidiasis/diagnosis , Strongyloidiasis/drug therapy , Strongyloidiasis/veterinary , Strongyloides stercoralis/genetics , Argentina/epidemiology , Feces/parasitology , Life Cycle Stages
2.
Int J Parasitol ; 53(13): 699-710, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37699506

ABSTRACT

Parasites belonging to the class Cestoda include zoonotic species such as Echinococcus spp. and Taenia spp. that cause morbidity and mortality in endemic areas, mainly affecting pastoral and rural communities in low income countries but also upper middle income countries. Cestodes show remarkable developmental plasticity, implying tight regulation of gene expression throughout their complex life cycles. Despite the recent availability of genomic data for cestodes, little progress was made on postgenomic functional studies. MicroRNAs (miRNAs) are key components of gene regulatory systems that guide diverse developmental processes in multicellular organisms. miR-71 is a highly expressed miRNA in cestodes, which is absent in vertebrates and targets essential parasite genes, representing a potential key player in understanding the role of miRNAs in cestodes biology. Here we used transfection with antisense oligonucleotides to perform whole worm miRNA knockdown in tetrathyridia of Mesocestoides vogae (syn. Mesocestoides corti), a laboratory model of cestodes. We believe this is the first report of miRNA knockdown at the organism level in these parasites. Our results showed that M. vogae miR-71 is involved in the control of strobilation in vitro and in the establishment of murine infection. In addition, we identified miR-71 targets in M. vogae, several of them being de-repressed upon miR-71 knockdown. This study provides new knowledge on gene expression regulation in cestodes and suggests that miRNAs could be evaluated as new selective therapeutic targets for treating Neglected Tropical Diseases prioritised by the World Health Organization.


Subject(s)
Cestoda , Cestode Infections , Mesocestoides , MicroRNAs , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Cestoda/genetics , Cestode Infections/veterinary , Cestode Infections/parasitology , Mesocestoides/metabolism , Life Cycle Stages
3.
Parasitology ; 149(13): 1775-1780, 2022 11.
Article in English | MEDLINE | ID: mdl-36165285

ABSTRACT

Taenia solium is the aetiological agent of cysticercosis, a zoonosis that causes severe health and economic losses across Latin America, Africa and Asia. The most serious manifestation of the disease is neurocysticercosis, which occurs when the larval stage (cysticercus) establishes in the central nervous system. Using Taenia crassiceps as an experimental model organism for the study of cysticercosis, we aimed to identify the in vitro conditions necessary to allow parasite development at the short- and long terms. First, cysticerci were incubated for 15 days in different media and parasite densities. The number of buddings and cysticerci diameter were measured to evaluate asexual multiplication and parasite growth, respectively. Vitality was determined by trypan blue staining and morphology analysis. As a result, high cysticerci density and medium containing FBS and the excretion/secretion (E/S) products of feeder cells induced parasite survival, growth and multiplication. Then, the long-term (5 weeks) incubation of the parasites in co-culture with feeder cells was evaluated. Consequently, the mammalian cell lines induced a significant increase in total parasite volume while axenic cultures did not show any statistically significant change over time. In this study, the proper conditions to maintain T. crassiceps in vitro are described for the first time in a simpler and more controlled setting other than experimental infections. In addition, it was shown that cysticerci growth, survival and asexual multiplication depend on a complex network of secreted factors from both parasite and host.


Subject(s)
Cysticercosis , Neurocysticercosis , Parasites , Taenia solium , Taenia , Animals , Humans , Mice , Cysticercus/physiology , Cysticercosis/veterinary , Mice, Inbred BALB C , Mammals
4.
Parasitol Res ; 121(4): 1155-1168, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35079857

ABSTRACT

Echinococcus multilocularis is the etiological agent of alveolar echinococcosis (AE), a serious parasitic disease in the Northern Hemisphere. The E. multilocularis primary cell cultivation system, together with E. multilocularis genome data and a range of pioneering molecular-based tools have advanced the research on this and other cestodes. RNA interference (RNAi) and microRNA knock-down have recently contributed to the study of the cellular and molecular basis of tapeworm development and host-parasite interaction. These, as well as other techniques, normally involve an electroporation step for the delivery of RNA, DNA, peptides, and small molecules into cells. Using transcriptome data and bioinformatic analyses, we herein report a genome-wide comparison between primary cells of E. multilocularis and primary cells under electroporated conditions after 48 h of culture. We observed that ~ 15% of genes showed a significant variation in expression level, including highly upregulated genes in electroporated cells, putatively involved in detoxification and membrane remodeling. Furthermore, we found genes related to carbohydrate metabolism, proteolysis, calcium ion binding and microtubule processing significantly altered, which could explain the cellular dispersion and the reduced formation of cellular aggregates observed during the first 48 h after electroporation.


Subject(s)
Cestoda , Cestode Infections , Echinococcosis , Echinococcus multilocularis , Animals , Echinococcosis/parasitology , Echinococcus multilocularis/genetics , Electroporation , Primary Cell Culture
5.
PLoS Negl Trop Dis ; 15(3): e0009297, 2021 03.
Article in English | MEDLINE | ID: mdl-33750964

ABSTRACT

The neglected zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode stage of the tapeworm parasite Echinococcus multilocularis. MicroRNAs (miRNAs) are small non-coding RNAs with a major role in regulating gene expression in key biological processes. We analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro, determined the spatial expression of miR-71 in metacestodes cultured in vitro and predicted miRNA targets. Small cDNA libraries from different samples of E. multilocularis were sequenced. We confirmed the expression of 37 miRNAs in E. multilocularis being some of them absent in the host, such as miR-71. We found a few miRNAs highly expressed in all life cycle stages and conditions analyzed, whereas most miRNAs showed very low expression. The most expressed miRNAs were miR-71, miR-9, let-7, miR-10, miR-4989 and miR-1. The high expression of these miRNAs was conserved in other tapeworms, suggesting essential roles in development, survival, or host-parasite interaction. We found highly regulated miRNAs during the different transitions or cultured conditions analyzed, which might suggest a role in the regulation of developmental timing, host-parasite interaction, and/or in maintaining the unique developmental features of each developmental stage or condition. We determined that miR-71 is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. MiRNA target prediction of the most highly expressed miRNAs and in silico functional analysis suggested conserved and essential roles for these miRNAs in parasite biology. We found relevant targets potentially involved in development, cell growth and death, lifespan regulation, transcription, signal transduction and cell motility. The evolutionary conservation and expression analyses of E. multilocularis miRNAs throughout metacestode development along with the in silico functional analyses of their predicted targets might help to identify selective therapeutic targets for treatment and control of AE.


Subject(s)
Echinococcus multilocularis/growth & development , Echinococcus multilocularis/genetics , Gene Expression Regulation/genetics , MicroRNAs/genetics , Animals , Base Sequence , Cell Proliferation/genetics , Echinococcosis/drug therapy , Echinococcosis/parasitology , Echinococcus multilocularis/drug effects , Host-Parasite Interactions/genetics , Humans , MicroRNAs/analysis , MicroRNAs/drug effects , Multigene Family/genetics , Sequence Analysis, RNA
6.
Int J Parasitol Parasites Wildl ; 13: 142-149, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33083226

ABSTRACT

After decades of being neglected, broad tapeworms now attract growing attention thanks to the increasing number of reports from humans but also thanks to many advancements achieved by application of molecular methods in diagnosis and epidemiological studies. Regarding sparganosis, unfortunately general uniformity of most species, their high intraspecific variability and lack of agreement among researchers has led to confusion about the classification of Spirometra/Sparganum species. For the first time we determined adult, eggs and plerocercoid life cycle stages and the molecular phylogeny of Sparganum proliferum obtained from endangered wild felids (Panthera onca, Leopardus pardalis, Leopardus guttulus and Herpailurus yagoauroundi) in one of the largest continuous remnants of worldwide biodiversity, the Atlantic Forest from South America. Our results showed that at least 57% of total species of wild felids in this natural area could act as definitive hosts of Sparganum proliferum. We conclude that the availability of more morphological characteristics are needed in order to secure reliable characterization and diagnosis of sparganosis. The integration of these data with molecular analysis of mitochondrial DNA sequences will be useful for species discrimination.

7.
PLoS Negl Trop Dis ; 13(12): e0007932, 2019 12.
Article in English | MEDLINE | ID: mdl-31881019

ABSTRACT

Echinococcosis represents a major public health problem worldwide and is considered a neglected disease by the World Health Organization. The etiological agents are Echinococcus tapeworms, which display elaborate developmental traits that imply a complex control of gene expression. MicroRNAs (miRNAs), a class of small regulatory RNAs, are involved in the regulation of many biological processes such as development and metabolism. They act through the repression of messenger RNAs (mRNAs) usually by binding to the 3' untranslated region (3'UTR). Previously, we described the miRNome of several Echinococcus species and found that miRNAs are highly expressed in all life cycle stages, suggesting an important role in gene expression regulation. However, studying the role of miRNAs in helminth biology remains a challenge. To develop methodology for functional analysis of miRNAs in tapeworms, we performed miRNA knockdown experiments in primary cell cultures of Echinococcus multilocularis, which mimic the development of metacestode vesicles from parasite stem cells in vitro. First, we analysed the miRNA repertoire of E. multilocularis primary cells by small RNA-seq and found that miR-71, a bilaterian miRNA absent in vertebrate hosts, is one of the top five most expressed miRNAs. Using genomic information and bioinformatic algorithms for miRNA binding prediction, we found a high number of potential miR-71 targets in E. multilocularis. Inhibition of miRNAs can be achieved by transfection of antisense oligonucleotides (anti-miRs) that block miRNA function. To this end, we evaluated a variety of chemically modified anti-miRs for miR-71 knockdown. Electroporation of primary cells with 2'-O-methyl modified anti-miR-71 led to significantly reduced miR-71 levels. Transcriptomic analyses showed that several predicted miR-71 targets were up-regulated in anti-miR-treated primary cells, including genes potentially involved in parasite development, host parasite interaction, and several genes of as yet unknown function. Notably, miR-71-silenced primary cell cultures showed a strikingly different phenotype from control cells and did not develop into fully mature metacestodes. These findings indicate an important function of miR-71 in Echinococcus development and provide, for the first time, methodology to functionally study miRNAs in a tapeworm.


Subject(s)
Echinococcus multilocularis/growth & development , Gene Expression Regulation, Developmental , MicroRNAs/metabolism , Animals , Cells, Cultured , Computational Biology , Stem Cells/physiology
8.
Int J Parasitol ; 47(10-11): 643-653, 2017 09.
Article in English | MEDLINE | ID: mdl-28526608

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression and perform critical functions in development and disease. In spite of the increased interest in miRNAs from helminth parasites, no information is available on miRNAs from Taenia solium, the causative agent of cysticercosis, a neglected disease affecting millions of people worldwide. Here we performed a comprehensive analysis of miRNAs from Taenia crassiceps, a laboratory model for T. solium studies, and identified miRNAs in the T. solium genome. Moreover, we analysed the effect of praziquantel, one of the two main drugs used for cysticercosis treatment, on the miRNA expression profile of T. crassiceps cysticerci. Using small RNA-seq and two independent algorithms for miRNA prediction, as well as northern blot validation, we found transcriptional evidence of 39 miRNA loci in T. crassiceps. Since miRNAs were mapped to the T. solium genome, these miRNAs are considered common to both parasites. The miRNA expression profile of T. crassiceps was biased to the same set of highly expressed miRNAs reported in other cestodes. We found a significant altered expression of miR-7b under praziquantel treatment. In addition, we searched for miRNAs predicted to target genes related to drug response. We performed a detailed target prediction for miR-7b and found genes related to drug action. We report an initial approach to study the effect of sub-lethal drug treatment on miRNA expression in a cestode parasite, which provides a platform for further studies of miRNA involvement in drug effects. The results of our work could be applied to drug development and provide basic knowledge of cysticercosis and other neglected helminth infections.


Subject(s)
MicroRNAs/genetics , Praziquantel/pharmacology , RNA, Helminth/genetics , Taenia/genetics , Animals , Anthelmintics/pharmacology , Gene Expression Regulation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...