Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 19(18): 4834-4837, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28858515

ABSTRACT

A new, direct, and diastereoselective synthesis of activated 2,3,4,6-tetrasubstituted tetrahydro-2H-pyrans is described. In this reaction, iron(III) catalyzed an SN2'-Prins cyclization tandem process leading to the creation of three new stereocenters in one single step. These activated tetrahydro-2H-pyran units are easily derivatizable through CuAAC conjugations in order to generate multifunctionalized complex molecules. DFT calculations support the in situ SN2' reaction as a preliminary step in the Prins cyclization.

2.
Chemistry ; 22(43): 15529-15535, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27624405

ABSTRACT

A highly efficient, diastereoselective, iron(III)-catalyzed intramolecular hydroamination/cyclization reaction involving α-substituted amino alkenes is described. Thus, enantiopure trans-2,5-disubstituted pyrrolidines and trans-5-substituted proline derivatives were synthesized by means of a combination of enantiopure starting materials, easily available from l-α-amino acids, with sustainable metal catalysts such as iron(III) salts. The scope of this methodology is highlighted in an enantiodivergent approach to the synthesis of both (+)- and (-)-pyrrolidine 197B alkaloids from l-glutamic acid. In addition, a computational study was carried out to gain insight into the complete diastereoselectivity of the transformation.


Subject(s)
Ferric Compounds/chemistry , Glutamic Acid/chemistry , Pyrrolidines/chemical synthesis , Amination , Catalysis , Pyrrolidines/chemistry , Stereoisomerism
3.
Chemistry ; 21(43): 15211-7, 2015 Oct 19.
Article in English | MEDLINE | ID: mdl-26471437

ABSTRACT

The different factors that control the alkene Prins cyclization catalyzed by iron(III) salts have been explored by means of a joint experimental-computational study. The iron(III) salt/trimethylsilyl halide system has proved to be an excellent promoter in the synthesis of crossed all-cis disubstituted tetrahydropyrans, minimizing the formation of products derived from side-chain exchange. In this iron(III)-catalyzed Prins cyclization reaction between homoallylic alcohols and non-activated alkenes, two mechanistic pathways can be envisaged, namely the classical oxocarbenium route and the alternative [2+2] cycloaddition-based pathway. It is found that the [2+2] pathway is disfavored for those alcohols having non-activated and non-substituted alkenes. In these cases, the classical pathway, via the key oxocarbenium ion, is preferred. In addition, the final product distribution strongly depends upon the nature of the substituent adjacent to the hydroxy group in the homoallylic alcohol, which can favor or hamper a side 2-oxonia-Cope rearrangement.

SELECTION OF CITATIONS
SEARCH DETAIL
...