Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Pathog ; 173(Pt A): 105881, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36379373

ABSTRACT

Cardiomyopathy is the most serious complication of chronic Chagas disease, caused by infection with the protozoan Trypanosoma cruzi. Exacerbated inflammation of the myocardium constitutes a major pathologic component of the disease. In the myocardial microenvironment, parasite antigens and host inflammatory mediators may aggravate tissue damage. The glycoinositolphospholipid (GIPL) from T. cruzi is an inflammation-eliciting antigen recognized by Toll-like receptor 4 (TLR4), whereas the proinflammatory cytokine macrophage migration inhibitory factor (MIF) promotes progression of chronic Chagas cardiomyopathy. We herein aimed to examine the involvement of GIPL and MIF in molecular mechanisms leading to a pathogenic inflammatory response in HL-1 cardiomyocytes and HMEC microvascular endothelial cells. Immunofluorescence analysis revealed that GIPL enhanced TLR4 expression in both cell types. We found that TLR4/GIPL interaction and MIF activity modulated the arachidonic acid pathway implicated in persistent inflammation. The combination of GIPL at 50 µg/ml and MIF at 50 ng/ml upregulated type 2 cyclooxygenase (COX-2) levels in HL-1 and HMEC cells, in a stronger way than each molecule acting independently. Moreover, increased expression of prostanoid synthases and release of prostaglandin E2 (PGE2) and thromboxane B2 (TxB2) were detected in stimulated cells. Transfection experiments in HL-1 and HMEC cells showed that COX-2 induction was transcriptionally regulated through GIPL-TLR4 engagement and NFκB signaling cascade. (GIPL + MIF)-triggered NFκB activation was markedly attenuated by treatment with 100 µM Fenofibrate, a PPAR-α ligand. Fenofibrate reduced COX-2-dependent generation of bioactive lipids in HL-1 and HMEC cells. In addition, Fenofibrate abolished (GIPL + MIF)-fostered release of NO, IL-1ß, IL-6, TNF-α, and CCL2. The combined actions of GIPL and MIF display potential for amplifying the inflammatory response in myocardium of parasite-infected hosts. Our current findings might help develop more effective measures to ameliorate cardiovascular abnormalities associated with Chagas heart disease.


Subject(s)
Chagas Disease , Fenofibrate , Macrophage Migration-Inhibitory Factors , Trypanosoma cruzi , Humans , Macrophage Migration-Inhibitory Factors/metabolism , Toll-Like Receptor 4 , Myocytes, Cardiac/metabolism , Cyclooxygenase 2 , Endothelial Cells/metabolism , Inflammation
2.
Parasitol Int ; 81: 102248, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33238215

ABSTRACT

Curcumin (Cur) is a natural polyphenolic flavonoid isolated from the rhizomes of Curcuma longa. Its anti-inflammatory and cardioprotective properties are increasingly considered to have beneficial effects on the progression of cardiomyopathy associated with Chagas disease, caused by Trypanosoma cruzi. However, the Cur therapeutic limitation is its bioavailability and new Cur nanomedicine formulations are developed to overcome this obstacle. In this research, we provide evidence showing that oral therapy with a suboptimal dose of the standard parasiticidal drug benznidazole (BZ) in combination with Cur-loaded nanoparticles is capable of reducing myocardial parasite load, cardiac hypertrophy, inflammation and fibrosis in mice with long-term infection by T. cruzi. Treatment with BZ plus Cur was highly effective in downregulating myocardial expression of proinflammatory cytokines/chemokines (IL-1ß, TNF-α, IL-6, CCL5), and the level/activity of matrix metalloproteinases (MMP-2, MMP-9) and inducible enzymes (cyclooxygenase, nitric oxide synthase) implicated in leukocyte recruitment and cardiac remodeling. Oral administration of a Cur-based nanoformulation displays potential as a complementary strategy to the conventional BZ chemotherapy in the treatment of chronic Chagas heart disease.


Subject(s)
Chagas Cardiomyopathy/drug therapy , Curcumin/pharmacology , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/physiology , Animals , Chagas Cardiomyopathy/parasitology , Chronic Disease , Female , Male , Mice , Mice, Inbred C57BL
3.
Parasitology ; 143(1): 60-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26522645

ABSTRACT

The gut epithelial barrier is a strategic place to prevent, or at least to limit, parasite dissemination upon oral infection with Toxoplasma gondii. Innate immunity to this pathogen results from delicate interactions involving different components of the infecting agent and the host. We herein aimed to examine the molecular mechanism by which protozoan DNA boosts the production of α-defensin-5 (DEFA-5), the main antimicrobial peptide at the target site of infection. The present study shows that DEFA-5 is rapidly upregulated in intestinal epithelial cells following intracellular Toll-like receptor 9 (TLR9) activation by unmethylated CpG motifs in DNA from T. gondii (CpG-DNA). Concomitantly, CpG-DNA purified from the pathogen markedly increased TLR9 mRNA expression levels in the Caco-2 cell line. We further verified that DEFA-5 production was dependent on interferon-ß released from these cells upon treatment with CpG-DNA prepared from tachyzoites. Our results suggest that, in protozoan DNA-stimulated intestinal epithelial cells, the TLR9/interferon-ß/DEFA-5 pathway may initiate an innate anti-T. gondii response without the need of parasite invasion. These findings highlight the key role of the gut epithelium in Toxoplasma recognition and amplification of local host defence against this microbe, thereby contributing to gain insight into immunoprotective mechanisms and to improve therapeutic strategies.


Subject(s)
Interferon-beta/immunology , Nucleotide Motifs/genetics , Toll-Like Receptor 9/immunology , Toxoplasma/immunology , Toxoplasmosis/immunology , alpha-Defensins/metabolism , Animals , Caco-2 Cells , DNA Methylation , DNA, Protozoan/genetics , Epithelial Cells/immunology , Humans , Immunity, Innate , Intestines/immunology , Toxoplasma/genetics , Toxoplasmosis/parasitology , alpha-Defensins/genetics , alpha-Defensins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...