Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
4.
Water Res ; 233: 119791, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36863282

ABSTRACT

This study evaluates for the first time the impact of a large wildfire on the hydrogeochemistry of a deeply AMD-affected river at the beginning of the wet season. To accomplish this, a high-resolution water monitoring campaign was performed within the basin coinciding with the first rainfalls after summer. Unlike similar events recorded in AMD-affected areas, where dramatic increases in most dissolved element concentrations, and decreases in pH values are observed as a result of evaporitic salts flushing and the transport of sulfide oxidation products from mine sites, a slight increase in pH values (from 2.32 to 2.88) and decrease in element concentrations (e.g.; Fe: 443 to 205 mg/L; Al: 1805 to 1059 mg/L; sulfate: 22.8 to 13.3 g/L) was observed with the first rainfalls after the fire. The washout of wildfire-ash deposited in the riverbanks and the drainage area, constituted by alkaline mineral phases, seems to have counterbalanced the usual behavior and patterns of the river hydrogeochemistry during autumn. Geochemical results indicate that a preferential dissolution occurs during ash washout (K > Ca > Na), with a quick release of K followed by an intense dissolution of Ca and Na. On the other hand, in unburnt zones parameters and concentrations vary to a lesser extent than burnt areas, being the washout of evaporitic salts the dominant process. With subsequent rainfalls ash plays a minor role on the river hydrochemistry. Elemental ratios (Fe/SO4 and Ca/Mg) and geochemical tracers in both ash (K, Ca and Na) and AMD (S) were used to prove the importance of ash washout as the dominant geochemical process during the study period. Geochemical and mineralogical evidences point to intense schwertmannite precipitation as the main driver of reduction in metal pollution. The results of this study shed light on the response of AMD-polluted rivers to certain climate change effects, since climate models predict an increase in the number and intensity of wildfires and torrential rain events, especially in Mediterranean climates.


Subject(s)
Water Pollutants, Chemical , Wildfires , Rivers , Water Pollutants, Chemical/analysis , Salts , Environmental Monitoring
5.
Mar Pollut Bull ; 187: 114491, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566513

ABSTRACT

This research reports the effects of pH increase on contaminant mobility in acid mine drainage from the Iberian Pyrite Belt by seawater mixing in the laboratory, simulating the processes occurring in the Estuary of Huelva (SW Iberian Peninsula). Concentrations of Al, Fe, As, Cu and REY in mixing solutions significantly decreased with increasing pH. Schwertmannite precipitation at pH 2.5-4.0 led to the total removal of Fe(III) and As. Subsequently, iron-depleted solutions began to be controlled by precipitation of basaluminite at pH 4.5-6.0, which acted as a sink for Al, Cu and REY. Nevertheless, as the pH rises, schwertmannite becomes unstable and releases back to solution the previously retained As. Moreover, other elements (S, Zn, Cd, Ni and Co) behaved conservatively in mixing solutions with no participation in precipitation processes. Some toxic elements finally end up to the Atlantic Ocean contributing to the total pollutant loads and environmentally threatening the coastal areas.


Subject(s)
Trace Elements , Water Pollutants, Chemical , Water , Ferric Compounds , Water Pollutants, Chemical/analysis , Rivers , Spain , Environmental Monitoring
6.
Environ Sci Process Impacts ; 24(9): 1383-1391, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35838030

ABSTRACT

Schwertmannite is a common nanomineral in acid sulfate environments such as Acid Mine Drainage (AMD) and Acid Sulfate Soils (ASS). Its high surface area and positively charged surface result in a strong affinity towards toxic oxyanions such as arsenate in solution. However, natural precipitation of schwertmannite also involves the accumulation of other impurities, in particular aluminum, an element that is often incorporated into the structure of Fe-oxide minerals, such as goethite and ferrihydrite, affecting their structural and surface properties. However, little is known about the effect of Al incorporation in schwertmannite on the removal capacity of toxic oxyanions found in AMD and ASS (e.g. arsenate). In this paper, schwertmannite samples with variable Al concentration were synthetized and employed in arsenate adsorption isotherm experiments at a constant pH of 3.5. Solid samples before and after arsenate adsorption were characterized using high energy X-ray diffraction and pair distribution function analyses in order to identify structural differences correlated with the Al content as well as variations in the coordination of arsenate adsorbed on the mineral surface. These analyses showed limited Al accumulation on schwertmannite (up to 5%) with a low effect on its structure. The maximum arsenate sorption capacity (258 mmolH2AsO4 molFe-1) was in the range of that with pure schwertmannite, but a higher proportion of inner-sphere coordination was observed. Finally, Al was found to desorb from schwertmannite, with adsorbed arsenate preventing this effect and increasing the stability of the mineral. These results are useful to interpret observations from the field, in particular from river water affected by AMD and ASS, where similar conditions are observed, and where aluminum incorporation is expected.


Subject(s)
Arsenates , Iron Compounds , Adsorption , Aluminum , Arsenates/chemistry , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Minerals/chemistry , Oxides , Soil , Sulfates/chemistry , Surface Properties , Water
7.
Environ Pollut ; 306: 119448, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35561798

ABSTRACT

This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 µg/L in the Tinto and Odiel estuaries, respectively, to 0.02 µg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 µg/L to 0.02 µg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl0 and K+ ions, which compete for adsorption sites with Tl+ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.


Subject(s)
Estuaries , Water Pollutants, Chemical , Acids/analysis , Environmental Monitoring , Minerals , Particulate Matter , Rivers , Spain , Thallium , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 295: 133876, 2022 May.
Article in English | MEDLINE | ID: mdl-35131274

ABSTRACT

A phosphogypsum stack located in SW Spain releases highly acidic and contaminated leachates to the surrounding estuarine environment. Column experiments, based on a mixture of an alkaline reagent (i.e., MgO or Ca(OH)2) dispersed in an inert matrix (dispersed alkaline substrate (DAS) technology), have shown high effectiveness for the treatment of phosphogypsum leachates. MgO-DAS and Ca(OH)2-DAS treatment systems achieved near total removal of PO4, F, Fe, Zn, Al, Cr, Cd, U, and As, with initial reactive mass:volume of leachate treated ratios of 3.98 g/L and 6.35 g/L, respectively. The precipitation of phosphate (i.e., brushite, cattiite, fluorapatite, struvite and Mn3Zn(PO4)2·2H2O) and sulfate (i.e., despujolsite and gypsum) minerals could control the solubility of contaminants during the treatments. Therefore, the hazardousness of these wastes must be accurately assessed in order to be properly managed, avoiding potential environmental impacts. For this purpose, two standardized leaching tests (EN-12457-2 from the European Union and TCLP from the United States) were performed. According to European Union (EN-12457-2) regulation, some wastes recovered from DAS treatments should be classified as hazardous wastes because of the high concentrations of SO4 or Sb that are leached. However, according to United States (US EPA-TCLP) legislation, all DAS wastes are designated as non-hazardous wastes. Moreover, the solids generated in the DAS systems could constitute a promising secondary source of calcite and/or P. This research could contribute to worldwide suitable waste management for the fertilizer industry.


Subject(s)
Fertilizers , Waste Management , Conservation of Natural Resources , Hazardous Waste , Struvite
9.
Sci Total Environ ; 764: 143796, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33387768

ABSTRACT

This paper addresses the behaviour of several technology critical metals (TCMs), i.e., rare earth elements (REEs), Y, Sc, Ga and Tl, in the Tinto River (SW Spain), quantifying their fluxes to the Atlantic Ocean and unravelling the governing geochemical processes controlling their solubility. To accomplish this goal, a high-resolution (2-24 h) sampling was performed during the hydrological year 2017/18. Mean dissolved concentrations of 380 µg/L of REE, 99 µg/L of Y, 15 µg/L of Sc, 9.2 µg/L of Ga and 4.8 µg/L of Tl were found. Most TCMs followed a behaviour similar to that of sulphate and base metals throughout the year, exhibiting a quasi-conservative behaviour due to acidic conditions. However, dissolved Tl concentrations seem to be strongly controlled by Tl incorporation onto secondary minerals and diatoms deposited on the riverbed, especially during the dry season. The remobilization of riverbed sediments led to the transport of significant amounts of TCMs associated with particulate matter, especially Al oxy-hydroxy-sulphates or Al-silicates rather than Fe precipitates (except for Tl and Ga). Around 5.8 t of REE, 1.3 t of Y, 248 kg of Sc, 139 kg of Ga and 138 kg of Tl were delivered annually in their dissolved forms by the Tinto River to the Atlantic Ocean, which constitutes around 0.09% of the dissolved global flux into the oceans of Y, 0.02% of the REE flux, 0.01% of the Ga flux and 0.001% of the Sc flux.

10.
J Environ Manage ; 280: 111699, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33272656

ABSTRACT

This paper tries to analyse the technical and economic performance of a full-scale passive Disperse Alkaline Substrate (DAS) treatment plant steadily operating for 28 months (840 days) to treat extremely acidic and metal rich mine waters in the Iberian Pyrite Belt (SW Spain). For the first time, an economic evaluation of this technology and its comparison with other passive treatments is reported. During this period, around 56,000 m3 of mine waters have been treated, without significant clogging or exhaustion of the alkaline substrate. The efficiency of the system is demonstrated by a significant decrease in the average net acidity (from 2005 to -43 mg/L as CaCO3 equivalent) and the total elimination of Al, Cu, REY, Zn, As, Cr, Mo, V, Cd, Pb, Co and other trace metals. Water quality of the treated output discharge meets the threshold values for irrigation and drinking standards, except for Fe, Mn and sulphate. The accumulation of elements of economic interest in the waste (e.g., 32 t of Fe, 6.1 t of Al, 0.8 t of Cu, 0.8 t of Zn, 39.4 kg of REE, 20 kg of Co or 1 kg of Sc), easily extractable with diluted acids, may turn a hazardous waste into a valuable resource. The benefits associated with the revalorization of this metal-rich waste could reach a total of 27478 USD, but is more reliably estimated to be around 8243 USD due to technologic limitations. This benefit would help to defray the maintenance costs (8428 €) and make DAS an economically self-sustainable treatment. The annual treatment cost for DAS was 0.27 €/m3, being the lowest value found among other reported conventional passive schemes, and from 8 to 12 times lower compared to active technologies. The results obtained prove that the DAS technology is the most technically and economically sustainable way to decontaminate acid and metal-rich mine waters in abandoned mines.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Environmental Monitoring , Metals/analysis , Metals, Heavy/analysis , Mining , Spain , Water Pollutants, Chemical/analysis
11.
J Environ Manage ; 275: 111251, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32846361

ABSTRACT

The optimization of the dispersed alkaline substrate (DAS) technology was investigated to achieve the treatment of highly acidic and polluted effluents from a phosphogypsum pile in an orphan site of SW Spain. This phosphogypsum disposal area is located on the Tinto river marsh soils, where it acts as a source of pollution for the estuarine environment, releasing high concentrations of metal(loid)s and radionuclides, which degrade the surrounding waters. The methodology consists of flowing the leachates through columns loaded with a combination of a fine-grained alkaline reagent scattered in a non-reactive matrix to raise the water pH while decreasing the solubility of dissolved contaminants. Seven columns were built, one for each of the alkaline reagent used: limestone, barium carbonate, biomass ash, fly ash, MgO, Mg(OH)2, and Ca(OH)2. The Ca(OH)2-DAS and MgO-DAS treatment systems showed the highest effectiveness, reaching near-total removal for PO4, F, Fe, Zn, Cu, Al, Cr, and U with initial reagent mass:treated volume ratios of 36.3 g/L and 7.57 g/L, respectively. Total As removal was only achieved in the Ca(OH)2-DAS treatment. Phosphate precipitation was the main mechanism responsible for pollutants removal. Geochemical modeling using PHREEQC code and mineralogical evidence confirmed the precipitation of these minerals. This study forms the basis of an effective and environmentally sustainable treatment system for phosphogypsum leachates to reduce the impact of the fertilizer industry worldwide.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Calcium Sulfate , Phosphorus , Spain , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 722: 137905, 2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32197167

ABSTRACT

This study deals with the metal partitioning and bioavailability of metal/loids in the estuary Ria of Huelva (SW Spain) which is strongly affected by historical mining and industrial activities. To address this issue, traditional (i.e., grab samples) and passive sampling (i.e., diffusive gradient in thin films, DGTs) was carried out in the outer part of the estuary during different tidal cycles in order to determine the dissolved and particulate metal/loid concentrations. The dissolved concentrations exceeded, by several orders of magnitude, those reported in other estuaries worldwide that are affected by anthropogenic activities. A spatial pattern was observed in the metal distribution; a decrease seaward was recorded for some of the elements associated with mining (e.g., Cu, Zn, and Cd), the opposite tendency is observed for others associated with harbor emissions (e.g., Sn, Ni, or Pb). A different metal/loid partitioning pattern was also observed; Fe, and to a lesser extent Pb and Sn, were chiefly found in the particulate matter, while the rest of the elements were mainly found in the dissolved form. The bioavailability of the metal/loids was studied by speciation using both geochemical modeling and DGTs; while concentrations in DGTs supported metal/loid speciation for Zn, Cd, Mn, Co, As, and Sb according to their affinity to form strong or weak complexes, some discrepancies were observed for other elements such as Cu, V, Fe, and Pb, which are prone to forming strong complexes. The main reason behind the unexpectedly high Fe and Pb DGTs concentrations may be associated with their presence in the colloidal particles passing through the DGT. There was a strong positive correlation between dissolved and DGT concentrations for Cd and Mn, and to a lesser extent for Fe and Cu, highlighting the direct relationship between the concentrations in water and availability to living organisms in the estuary.

13.
Chemosphere ; 242: 125174, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31675582

ABSTRACT

Salt marshes are natural deposits of heavy metals in estuarine systems, where sulphide precipitation associated with redox changes often results in a natural attenuation of contamination. In the present study, we focus on the effects of variable redox conditions imposed to a highly-polluted phosphogypsum stack that is directly piled over the salt marsh soil in the Tinto River estuary (Huelva, Spain). The behaviour of contaminants is evaluated in the phosphogypsum waste and in the marsh basement, separately, in controlled, experimentally-induced oscillating redox conditions. The results revealed that Fe, and to a lesser extent S, control most precipitation/dissolution processes. Ferric iron precipitates in the form of phosphates and oxyhydroxides, while metal sulphide precipitation is insignificant and appears to be prevented by the abundant formation of Fe phosphates. An antagonistic evolution with changing redox conditions was observed for the remaining contaminants such as Zn, As, Cd and U, which remained mobile in solution during most of experimental run. Therefore, these findings revealed that high concentrations of phosphates inhibit the typical processes of immobilisation of pollutants in salt-marshes which highlights the elevated contaminant potential of phosphogypsum wastes on coastal environments.


Subject(s)
Calcium Sulfate/chemistry , Estuaries , Oxidation-Reduction , Phosphorus/chemistry , Environmental Monitoring/methods , Iron/chemistry , Metals, Heavy/analysis , Phosphates/chemistry , Rivers , Spain , Water Pollutants, Chemical/analysis , Wetlands
14.
Sci Total Environ ; 660: 395-405, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30640108

ABSTRACT

This research evaluates the feasibility of an alkaline treatment system for highly acid leachates from a phosphogypsum stack located in an estuarine environment degraded by such pollution. The presented methodology consists of the addition of a Ca(OH)2 solution to the different types of phosphogypsum-related acidic leachates with the aim to increase their pH and subsequently, to provoke the precipitation and immobilization of the dissolved contaminants. In fact, phosphates and fluorides reached removal of 100% and 90%, respectively. As regards metals, removal values close to 100% were reached for Fe, Al, Cr, Cd, U and Zn, whereas it did not seem to be totally effective for other elements such as As (removal of 57-82%) and Sb (4-36%). The decrease of contaminant concentrations was caused probably by co-precipitation and/or adsorption to phosphate phases, together with by fluoride precipitation. The solid phases formed during the treatment were subjected to two standard leaching tests (EN 12457-2 from the EU and TCLP from the US) in order to conduct a risk and management assessment. In this context, some of the precipitates formed during the treatment would be classified as hazardous wastes, due to the high concentration of As leached. Moreover, the potential economic costs of a convectional active treatment system were also explored. This study sets the basis for a new research line with the aim to minimise the impact of the phosphogypsum stacks worldwide to their adjacent environment.

15.
J Hazard Mater ; 363: 258-267, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30308365

ABSTRACT

The Gabes Gulf had received huge quantities of phosphogypsum discharged from fertilizer plants. Dumping phosphogypsum in coastal waters leads to the formation of foam layers which can float on the surface and be passively transported to distant areas. This is the first attempt at geochemical and mineralogical characterization of these industrial foams in order to understand their role in the dynamic and behavior of contaminants in marine environment. Chemically, phosphogypsum foams (PGFs) are heavily loaded with radiochemical contaminants. Their mineralogical composition showed a prevalence of synthetic gypsum followed by other secondary minerals including halite, quartz, dolomite, sphalerite-Cd and fluorapatite. PGFs are rich in organic matter (OM), precursor of their formation. Once released in gypseous water, the OM in solution undergoes agglomeration, cementing and flotation steps leading to the formation of floating foams. The foams' OM was found to control the mobility of industrial contaminants contributing then to the marine environment pollution. Consequently, PGFs are the main accumulating, transporting and dispersion agent of phosphogypsum radiochemical contaminants. Thus, PGFs removal has the potential to reduce enormously the dynamics of contaminants transferred from the fertilizer plants to the aquatic environment, reducing thus their impacts on the marine environment and health status in Gabes.

16.
Chemosphere ; 216: 19-30, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30359913

ABSTRACT

The cementation complex of Las Viñas (SW Spain) is a partially reclaimed abandoned mine site located in the drainage basin of a water reservoir currently under construction. The aim of this investigation was to analyze these mine soils to evaluate their potential environmental impact, especially on the final reservoir water quality. Results evidence the extremely high acidity of soils (pH of 3.4 and maximum potential acidity of 47 kg CaCO3/ton), with high concentrations of trace elements, especially As, Pb and Cu. Sequential extraction data reveal the potential release of significant quantities of Mn, Cd, Cu and other easily-soluble trace elements by rainfalls. The weathering and transport of soils to the bottom sediments of the planned reservoir could lead to the release of significant quantities of toxic trace elements to the water column if anoxic (mainly As, Sb, Cr, Ni, Cu and Pb) or oxic (mainly Hg, Pb, V, Cu and As) conditions are found in the sediments. The acidity and metals released from these soils could jeopardize the quality of the reservoir waters. Remediation measures must be therefore adopted, focused on the cleanup and liming of soils in order to promote colonization and vegetation succession, thus avoiding soil erosion and limiting metal release to the hydrosphere. This study proposes the use of different low-cost materials to improve the soil quality, limiting the metal transfer to the planned reservoir water. The information contained in this study could be of great importance in other watersheds affected by abandoned mine sites.


Subject(s)
Mining , Soil Pollutants/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Spain , Trace Elements/analysis , Water Quality
17.
J Hazard Mater ; 360: 587-593, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30149345

ABSTRACT

Mining residues management is one of the greatest challenges for mining companies around the world. The increasing consciousness of the general public and governments about the potential threat that those residues can pose to the environment is demanding consistent and precise methodologies for assessing the potential release of toxic metals. On this regard, the modified BCR® sequential extraction procedure (SEP) is frequently the chosen assessing protocol. However, this protocol was designed to study soils and sediments with low to moderate metal pollution, and validation of its applicability to mining residues is missing. The present research covers this gap of knowledge by subjecting selected highly polluted mining residues to the modified BCR®SEP. On the light of these results, it was confirmed that most of the metal bearing minerals in the mining residues were not completely dissolved in the corresponding SEP and, therefore, the application of BCR®SEP to mining residues systematically leads to an underestimation of metals mobility. The necessary changes to optimize the BCR®SEP to study mining residues would set a extraction procedure distinctively different from the original; thus it is strongly recommended to use alternative approaches to assess toxic metals mobility in highly polluted mining residues.

18.
Sci Total Environ ; 624: 1031-1040, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29929220

ABSTRACT

This study aims to explore the impact of chronic metal exposure derived from persistent pollution from mining activity using human gallstones as proxies. The samples were obtained from patients residing in geologically and environmentally contrasting areas in the Province of Huelva, SW Spain, allowing for the evaluation of the regional effect of metal pollution. The study group resides in the Iberian Pyrite Belt characterized by natural and anthropogenic metal pollution from mining activities, whereas the control group resides in the Ossa Morena Zone famous for its natural parks. A total of 68 gallstones were first classified based on their phase composition and structure and subsequently their chemical composition was studied using solution Inductively Coupled Plasma-Mass Spectrometry. The metal concentrations increased in the cholesterol-rich gallstones from pure, to mixed and composite cholesterol stones along with the increasing amount of minor phases, such as bilirubinate, carbonate, and phosphate. These cholesterol stones did not show an evident enrichment tendency. On the contrary, pigment stones, composed of bilirubinate, carbonate, and phosphate phases, were rich in a variety of elements and the regional comparison showed that the pigment stones from the study area were enriched in sulfide-associated metal(loid)s, Mn, Fe, Cu, Zn, Sr, As, Ag, Sb, and Pb with respect to the control group. Inhalation of polluted airborne particulate matter is considered as one of the main exposure routes among the residents of the study area. Additionally, consumption of local water and locally produced food products such as fruit and vegetables and dermal contact may be possible sources of exposure, but no direct connection was observed.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Monitoring/methods , Environmental Pollutants/analysis , Gallstones/chemistry , Metals/analysis , Humans , Spain
19.
Water Res ; 140: 344-353, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29751316

ABSTRACT

Highly acidic phosphogypsum wastes with elevated potential for contaminant leaching are stack-piled near coastal areas worldwide, threatening the adjacent environment. Huge phosphogypsum stacks were disposed directly on the marshes of the Estuary of Huelva (SW Spain) without any impermeable barrier to prevent leaching and thus, contributing to the total contamination of the estuarine environment. According to the previous weathering model, the process water ponded on the surface of the stack, initially used to carry the waste, was thought to be the main washing agent through its infiltration and subsequently the main component of the leachates emerging as the edge outflows. Preliminary restorations have been applied to the site and similar ones are planned for the future considering process water as the only pollution agent. Further investigation to validate the pollution pathway was necessary, thus an evaluation of the relationship between leachates and weathering agents of the stack was carried out using stable isotopes (δ18O, δ2H, and δ34S) as geochemical tracers. Quantification of the contribution of all possible end-members to the phosphogypsum leachates was also conducted using ternary mixing via the stable isotopic tracers. The results ruled out ponded process water as main vector of edge outflow pollution and unveiled a continuous infiltration of estuarine waters to the stack implying that is subjected to an open weathering system. The isotopic tracers revealed a progressive contribution downstream from fluvial to marine signatures in the composition of the edge outflows, depending on the location of each disposal zone within the different estuarine morphodynamic domains. Thus, the current study suggests that the access of intertidal water inside the phosphogypsum stack, for instance through secondary tidal channels, is the main responsible for the weathering of the waste in depth, underlying the necessity for new, more effective restorations plans.


Subject(s)
Calcium Sulfate/chemistry , Phosphorus/chemistry , Water Pollution/analysis , Calcium Sulfate/metabolism , Environmental Monitoring/methods , Estuaries , Fresh Water , Oxygen Isotopes/analysis , Phosphorus/metabolism , Spain , Sulfur Isotopes/analysis , Waste Products , Wetlands
20.
J Hazard Mater ; 350: 154-161, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29475167

ABSTRACT

Sulfate reduction and its associated contaminant immobilization in marsh soils supporting a phosphogypsum stack was examined by pore-water and solid analysis, selective extractions, microscopy and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy. The negative impact of this stack on estuarine environments is a concerning problem. In the weathering profile, total concentrations of most pollutants increase with depth; instead, dissolved contents in pore-waters increase to middle of the saturated zone but then decrease drastically down to reach the marsh due to sulfide precipitation. Excess of acid-volatile sulfide plus pyritic sulfur over metals bound to the oxidizable fraction indicates that sulfide precipitation is the main mechanism responsible for metal removal in the marsh. Thus, abundant pyrite occurred as framboidal grains, in addition to other minor sulfides of As, Zn and Cu as isolated particles. Moreover, high contents of elemental sulfur were found, which suggest partial sulfide oxidation, but marsh may have capacity to buffer potential release of contaminants. The importance of sulfur species was quantitatively confirmed by XANES, which also supports the accuracy of selective extraction schemes. Accordingly, managing pore-water quality through organic carbon-rich amendments over phosphogypsum stacks could lead to a decrease in contaminant loading of leakages resulting from weathering.

SELECTION OF CITATIONS
SEARCH DETAIL
...