Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 355: 120350, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422846

ABSTRACT

The difficulty of the microbial conversion process for the degradation of sotol vinasse due to its high acidity and organic load makes it an effluent with high potential for environmental contamination, therefore its treatment is of special interest. Calcium carbonate is found in great abundance and has the ability to act as a neutralizing agent, maintaining the alkalinity of the fermentation medium as well as, through its dissociation, releasing CO2 molecules that can be used by phototrophic CO2-fixing bacteria. This study evaluated the use of Rhodopseudomonas telluris (OR069658) for the degradation of vinasse in different concentrations of calcium carbonate (0, 2, 4, 6, 8 and 10% m/v). The results showed that calcium carbonate concentration influenced volatile fatty acids (VFA), alkalinity and pH, which in turn influenced changes in the degradation of chemical oxygen demand (COD), phenol and sulfate. Maximum COD and phenol degradation values of 83.16 ± 0.15% and 90.16 ± 0.30%, respectively, were obtained at a calcium carbonate concentration of 4%. At the same time, the lowest COD and phenol degradation values of 52.01 ± 0.38% and 68.21 ± 0.81%, respectively, were obtained at a calcium carbonate concentration of 0%. The data obtained also revealed to us that at high calcium carbonate concentrations of 6-10%, sotol vinasse can be biosynthesized by Rhodopseudomonas telluris (OR069658) to VFA, facilitating the degradation of sulfates. The findings of this study confirmed the potential for using Rhodopseudomonas telluris (OR069658) at a calcium carbonate concentration of 4% as an appropriate alternative treatment for sotol vinasse degradation.


Subject(s)
Carbon , Rhodopseudomonas , Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Carbon Dioxide , Industrial Waste/analysis , Calcium Carbonate , Phenols , Bioreactors
2.
Foods ; 9(10)2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33023126

ABSTRACT

Lactic acid bacteria (LAB) are an important source of bioactive metabolites and enzymes. LAB isolates from fresh vegetable sources were evaluated to determine their antimicrobial, enzymatic, and adhesion activities. A saline solution from the rinse of each sample was inoculated in De Man, Rogosa and Sharpe Agar (MRS Agar) for isolates recovery. Antimicrobial activity of cell-free supernatants from presumptive LAB isolates was evaluated by microtitration against Gram-positive, Gram-negative, LAB, mold, and yeast strains. Protease, lipase, amylase, citrate metabolism and adhesion activities were also evaluated. Data were grouped using cluster analysis, with 85% of similarity. A total of 76 LAB isolates were recovered, and 13 clusters were formed based on growth inhibition of the tested microorganisms. One cluster had antimicrobial activity against Gram-positive bacteria, molds and yeasts. Several LAB strains, PIM4, ELO8, PIM5 and CAL14 strongly inhibited the growth of L. monocytogenes and JAV15 and TOV9 strongly inhibited the growth of F. oxysporum. Based on enzymatic activities, 5 clusters were formed. Seven isolates hydrolyzed starch, 46 proteins, 14 lipids, and 36 metabolized citrate. LAB isolates with the best activities were molecularly identified as Leuconostoc mesenteroides, Enterococcus mundtii and Enterococcus faecium. Overall, LAB isolated from vegetables showed potential technological applications and should be further evaluated.

SELECTION OF CITATIONS
SEARCH DETAIL
...