Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Oral Patol Oral Cir Bucal ; 23(6): e646-e655, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30341273

ABSTRACT

BACKGROUND: The purpose of this study was to evaluate nanohardness and viscoelastic behavior of dentin surfaces treated with two canal sealer cements for dentin remineralization. MATERIAL AND METHODS: Dentin surfaces were subjected to: i) 37% phosphoric acid (PA) or ii) 0.5 M ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite-based cements, containing sodium hydroxide (calcypatite) or zinc oxide (oxipatite), respectively. Samples were stored in simulated body fluid during 24 h or 21 d. The intertubular and peritubular dentin were evaluated using a nanoindenter to assess nanohardness (Hi). The load/displacement responses were used for the nano-dynamic mechanical analysis to estimate complex modulus (E*) and tan delta (δ). The modulus mapping was obtained by imposing a quasistatic force setpoint to which a sinusoidal force was superimposed. AFM imaging and FESEM analysis were performed. RESULTS: After 21 d of storage, dentin surfaces treated with EDTA+calcypatite, PA+calcypatite and EDTA+oxipatite showed viscoelastic discrepancies between peritubular and intertubular dentin, meaning a risk for cracking and breakdown of the surface. At both 24 h and 21 d, tan δ values at intertubular dentin treated with the four treatments performed similar. At 21 d time point, intertubular dentin treated with PA+oxipatite achieved the highest complex modulus and nanohardness, i.e., highest resistance to deformation and functional mineralization, among groups. CONCLUSIONS: Intertubular and peritubular dentin treated with PA+oxipatite showed similar values of tan δ after 21 d of storage. This produced a favorable dissipation of energy with minimal energy concentration, preserving the structural integrity at the dentin surface.


Subject(s)
Dental Cements/pharmacology , Dentin/drug effects , Sodium Hydroxide/pharmacology , Tooth Remineralization/methods , Zinc Oxide/pharmacology , Humans , In Vitro Techniques , Materials Testing , Surface Properties
2.
Int Endod J ; 50 Suppl 2: e109-e119, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28653756

ABSTRACT

AIM: To evaluate the remineralization ability of two endodontic sealer cements. METHODOLOGY: Mid-coronal dentine surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5 mol L-1 ethylenediaminetetraacetic acid (EDTA) conditioning prior to the application of two experimental hydroxyapatite-based cements, containing sodium hydroxide (calcypatite) or zinc oxide oxiapatite respectively. Samples were stored in simulated body fluid for 24 h or 21 days. Remineralization of the dentine surfaces were studied by Raman spectroscopy (mapping with K-means cluster and hierarchical cluster analysis) was undertaken. Nanoroughness and collagen fibril width measurements were performed with an atomic force microscopy. ANOVA and Student-Newman-Keuls test were performed (α=0.05). RESULTS: Phosphoric acid+oxiapatite promoted both the highest dentine mineralization (P < 0.05) and crystallographic maturity at the dentine surface. Noncrystalline amorphous-like apatites were also formed. Dentine treated with PA+calcypatite attained the roughest surface (P < 0.05) with minimal fibril width (P < 0.05). Cross-linking of collagen only became greater in the group PA+oxiapatite after 21 days. The maximum relative mineral concentration and structure of collagen linked to the amide I and ratio amide III/AGEs was obtained after using PA+calcypatite at 21-days time-point (P < 0.05). EDTA produced a lower stoichiometric hydroxyapatite (P < 0.05) with decreased maturity, at the expense of carbonate band widening, although it favoured the nucleation of carbonated calcium phosphate. CONCLUSIONS: Dentine surfaces treated with PA+oxiapatite attained the highest dentine remineralization with both crystalline-stoichiometric and amorphous apatites, at 21 days. EDTA conditioning facilitated amorphous-bulk mineral precipitation. The amorphization was more intense after using oxiapatite and provided an ion-rich environment favouring in situ dentine remineralization.


Subject(s)
Dental Cements/chemistry , Dentin/chemistry , Hydroxyapatites/chemistry , Zinc Oxide/chemistry , Materials Testing , Phosphoric Acids , Spectrum Analysis, Raman , Surface Properties , Tooth Remineralization
SELECTION OF CITATIONS
SEARCH DETAIL
...