Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1066493, 2023.
Article in English | MEDLINE | ID: mdl-36876111

ABSTRACT

Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.

2.
Genome Biol ; 23(1): 252, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36494864

ABSTRACT

BACKGROUND: JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear. RESULTS: Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-ß2 genes. We also show that high levels of JUNB switch the response of TGF-ß2 stimulation from an antiproliferative to a pro-invasive one, induce endogenous TGF-ß2 production by promoting TGF-ß2 mRNA translation, and enhance tumor growth and metastasis in mice. Moreover, tumor genomic data indicate that JUNB amplification associates with poor prognosis in breast and ovarian cancer patients. CONCLUSIONS: Our results reveal novel functions for JUNB in cell proliferation and tumor aggressiveness through regulation of cyclin E1 and TGF-ß2 expression, which might be exploited for cancer prognosis and therapy.


Subject(s)
Neoplasms , Transforming Growth Factor beta2 , Mice , Animals , Transforming Growth Factor beta2/genetics , Transcription Factor AP-1 , Cell Division , Cell Cycle Checkpoints , Carcinogenesis , Transcription Factors/genetics
3.
Adv Exp Med Biol ; 1233: 3-28, 2020.
Article in English | MEDLINE | ID: mdl-32274751

ABSTRACT

Ubiquitin ligases (E3) play a crucial role in the regulation of different cellular processes such as proliferation and differentiation via recognition, interaction, and ubiquitination of key cellular proteins in a spatial and temporal regulated manner. The type of ubiquitin chain formed determines the fate of the substrates. The ubiquitinated substrates can be degraded by the proteasome, display altered subcellular localization, or can suffer modifications on their interaction with functional protein complexes. Deregulation of E3 activities is frequently found in various human pathologies, including cancer. The illegitimated or accelerated degradation of oncosuppressive proteins or, inversely, the abnormally high accumulation of oncoproteins, contributes to cell proliferation and transformation. Anomalies in protein abundance may be related to mutations that alter the direct or indirect recognition of proteins by the E3 enzymes or alterations in the level of expression or activity of ubiquitin ligases. Through a few examples, we illustrate here the complexity and diversity of the molecular mechanisms related to protein ubiquitination involved in cell cycle regulation. We will discuss the role of ubiquitin-dependent degradation mediated by the proteasome, the role of non-proteolytic ubiquitination during cell cycle progression, and the consequences of this deregulation on cellular transformation. Finally, we will highlight the novel opportunities that arise from these studies for therapeutic intervention.


Subject(s)
Neoplasms/metabolism , Neoplasms/pathology , Ubiquitin/metabolism , Cell Proliferation , Humans , Neoplasms/enzymology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
4.
FEBS Lett ; 593(2): 209-218, 2019 01.
Article in English | MEDLINE | ID: mdl-30447065

ABSTRACT

Spermidine is a polyamine present in eukaryotes with essential functions in protein synthesis. At high concentrations spermidine and norspermidine inhibit growth by unknown mechanisms. Transcriptomic analysis of the effect of norspermidine on the plant Arabidopsis thaliana indicates upregulation of the response to heat stress and denatured proteins. Accordingly, these polyamines inhibit protein ubiquitylation, both in vivo (in yeast, Arabidopsis, and human Hela cells) and in vitro (with recombinant ubiquitin ligase). This interferes with protein degradation by the proteasome, a situation known to deplete cells of amino acids. Norspermidine treatment of yeast cells induces amino acid depletion, and supplementation of media with amino acids counteracts growth inhibition and cellular amino acid depletion but not inhibition of protein polyubiquitylation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Profiling/methods , Spermidine/analogs & derivatives , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , HeLa Cells , Heat-Shock Response/drug effects , Humans , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteolysis/drug effects , Sequence Analysis, RNA , Spermidine/pharmacology , Ubiquitination
5.
Methods Mol Biol ; 1336: 85-93, 2016.
Article in English | MEDLINE | ID: mdl-26231710

ABSTRACT

Cell synchronization techniques have been used for the studies of mechanisms involved in cell cycle regulation. Synchronization involves the enrichment of subpopulations of cells in specific stages of the cell cycle. These subpopulations are then used to study regulatory mechanisms of the cell cycle such as DNA synthesis, gene expression, protein synthesis, protein phosphorylation, protein degradation, and development of new drugs (e.g., CDK inhibitors). Here, we describe several protocols for synchronization of cells from different phases of the cell cycle. We also describe protocols for determining cell viability and mitotic index and for validating the synchrony of the cells by flow cytometry.


Subject(s)
Cell Culture Techniques/methods , Cyclin-Dependent Kinase Inhibitor Proteins/chemistry , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Animals , Aphidicolin/chemistry , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Cell Survival , DNA/chemistry , DNA Replication , Flow Cytometry , HeLa Cells , Humans , Mice , Mitosis , Mitotic Index , NIH 3T3 Cells , Nocodazole/chemistry , Thymidine/chemistry , Time Factors , Trypan Blue/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...