Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 940: 173440, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38802018

ABSTRACT

Despite their ability to mitigate climate change by efficiently absorbing atmospheric carbon dioxide (CO2) and acting as natural long-term carbon sinks, mangrove ecosystems have faced several anthropogenic threats over the past century, resulting in a decline in the global mangrove cover. By using standardized methods and the most recent Bayesian tracer mixing models MixSIAR, this study aimed to quantify source contributions, burial rates, and stocks of organic carbon (Corg) and explore their temporal changes (∼100 years) in seven lead-210 dated sediment cores collected from three contrasting Mexican mangrove areas. The spatial variation in Corg burial rates and stocks in these blue carbon ecosystems primarily depended on the influence of local rivers, which controlled Corg sources and fluxes within the mangrove areas. The Corg burial rates in the cores ranged from 66 ± 16 to 400 ± 40 g m-2 yr-1. The Corg stocks ranged from 84.9 ± 0.7 to 255 ± 2 Mg ha-1 at 50 cm depth and from 137 ± 2 to 241 ± 4 Mg ha-1 at 1 m depth. The highest Corg burial rates and stocks were observed in cores from the carbonate platform of Yucatan and in cores with reduced river influence and high mangrove detritus inputs, in contrast to patterns identified from global databases. Over the past century, the rising trends in Corg burial rates and stocks in the study sites were primarily driven by enhanced inputs of fluvial-derived Corg and, in some cores, mangrove-derived Corg. Despite their decreasing extension, mangrove areas remained highly effective producers and sinks of Corg. Ongoing efforts to enhance the global database should continue, including mangrove area characteristics and reliable timescales to facilitate cross-comparison among studies.

3.
Mar Pollut Bull ; 156: 111245, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32510387

ABSTRACT

The development of the Grijalva-Usumacinta river basin exerts modifications on its discharge area. A sediment core was studied to reconstruct environmental changes and trace element contamination status during the past 45 years. 210Pb-derived mass accumulation rates indicate higher sediment input to the area since 1995, related to increased precipitation and floodings in the catchment area. Sediments show finer particles from the late 1970s on, likely related to dams construction upriver and/or land use changes. Heavy metal enrichment factors (EF < 2) suggest minimum contamination. Benthic foraminifera and redox-sensitive - elements (As, Ba, Co, Cr, Cu, Ni, Pb, V and Zn) indicate the sediments before 2000 were deposited under oxygenated conditions. Afterwards, environmental conditions changed and benthic foraminifera and dinocysts assemblages changed suggesting eutrophication and lower oxygen conditions during the last 20 years. Monitoring should be continued to assess eutrophication/hypoxic/pollution trends that could become deleterious to the marine biota.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments , Gulf of Mexico , Rivers
4.
Mar Pollut Bull ; 149: 110498, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31430665

ABSTRACT

Spatial and temporal variability of mercury concentrations in sediments was evaluated in 210Pb-dated sediment cores from offshore and intertidal areas in the southern Gulf of Mexico. In offshore cores, mercury concentrations were comparable (11.2-69.2 ng g-1), and intermediate between concentrations in intertidal cores from the eastern (6.0-34.4 ng g-1) and the western (34.9-137.7 ng g-1) inlets of Términos Lagoon. The enrichment factor (EF) indicated minimal contamination (EF < 2) in most offshore cores, whereas in some intertidal cores steadily increasing mercury enrichment and fluxes were observed along the past century. No evidence of oil industry related mercury contamination was found, as the minor but increasing enrichment in intertidal cores is most likely related to land-derived sources such as catchment eroded soils and waste water runoff. Results highlight the importance to control catchment erosion and untreated sewage releases to reduce mercury loadings to the coastal zone.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Mercury/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Gulf of Mexico , Spatio-Temporal Analysis
5.
Mar Environ Res ; 149: 111-125, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31280120

ABSTRACT

The Campeche Sound is the major offshore oil producing area in the Southern Gulf of Mexico (SGoM). To evaluate the impact of oil related activities in the ocean floor sediments, we analyzed the geochemical (major and trace element, organic carbon and hydrocarbon concentrations) and biological (benthic foraminifera) composition of 62 superficial sediment samples, from 13 to 1336 m water depth. Cluster and Factor analysis of all the variables indicate that their distribution patterns are mainly controlled by differences between the terrigenous and carbonate platforms in the SGoM. Benthic foraminiferal assemblages were abundant and diverse, and their distribution patterns are mainly determined by water depth and sedimentary environment. However, most of the abundant species are opportunistic and/or low-oxygen tolerant, and many of their tests show oil stains and infillings, characteristic of oil polluted locations, suggesting the environment has been modified by natural seepage or oil-related activities. To determine if these conditions are natural or anthropogenic in origin, pre - industrial settings should be studied. Organic carbon (Corg) content (0.6-2.9%) and total hydrocarbon concentrations (PAHs 1.0-29.5 µg kg-1) were usually higher around the oil platforms area, the natural hydrocarbon seeps ("chapopoteras") area and offshore rivers, but there is no accumulation of oil related trace elements in these areas. However, the comparison with international sediment quality benchmarks indicates that Cd, Cr and Ni concentrations are above the threshold effect level, and also As, Ba and Cu are above the probable effect level benchmarks, which indicate that these element concentrations might be of potential ecological concern. Comprehensive studies involving different proxies, and assessing pre-industrial conditions, must be undertaken before assessing environmental health of marine benthic ecosystems.


Subject(s)
Environmental Monitoring , Foraminifera/chemistry , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Biodiversity , Foraminifera/classification , Gulf of Mexico , Petroleum Pollution
6.
Sci Total Environ ; 651(Pt 2): 3174-3186, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30463167

ABSTRACT

Trace element (As, Co, Cr, Cu, Ni, Pb, V and Zn) enrichment trends during the past century, were assessed in thirteen 210Pb-dated sediment cores from the southern Gulf of Mexico, with the purpose to evaluate the impact on the environment, and potentially on public health, of the offshore oil industry and of oil spills such as that of the Ixtoc1 well blowout in 1979. The trace element composition was quite homogeneous among cores; and the pre-industrial concentrations of Ba, Cr, Cu and Ni are naturally high in the region, as to reach levels of potential ecological concern. The influence of multiple and simultaneous processes (e.g. industrial activities, natural seeps, fluvial discharges) on the trace element concentrations is difficult to disentangle. Some cores suggested long-term preservation of putative oil spill traces, although it was not possible to attribute their origin. The Al-normalized redox element ratios, and the crude oil contamination ratio, suggested that these events occurred along almost four decades, and that the traces attributed to the Ixtoc1 spill were comparable to background conditions, most likely owing to active natural oil seeps in the area. In most cases there was a trend towards a lowering in the supply of trace elements; this might be associated with environmental controls in the region since the 1980s. This study highlights the relevance of using dated environmental archives to reconstruct the historical trends of trace metal contamination in areas where long-term environmental studies are scarce.

7.
Sci Total Environ ; 630: 1628-1640, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29554779

ABSTRACT

Coastal vegetated habitats can be important sinks of organic carbon (Corg) and mitigate global warming by sequestering significant quantities of atmospheric CO2 and storing sedimentary Corg for long periods, although their Corg burial and storage capacity may be affected by on-going sea level rise and human intervention. Geochemical data from published 210Pb-dated sediment cores, collected from low-energy microtidal coastal wetlands in El Salvador (Jiquilisco Bay) and in Mexico (Salada Lagoon; Estero de Urias Lagoon; Sian Ka'an Biosphere Reserve) were revisited to assess temporal changes (within the last 100years) of Corg concentrations, storage and burial rates in tropical salt marshes under the influence of sea level rise and contrasting anthropization degree. Grain size distribution was used to identify hydrodynamic changes, and δ13C to distinguish terrigenous sediments from those accumulated under the influence of marine transgression. Although the accretion rate ranges in all sediment records were comparable, Corg concentrations (0.2-30%), stocks (30-465Mgha-1, by extrapolation to 1m depth), and burial rates (3-378gm-2year-1) varied widely within and among the study areas. However, in most sites sea level rise decreased Corg concentrations and stocks in sediments, but increased Corg burial rates. Lower Corg concentrations were attributed to the input of reworked marine particles, which contribute with a lower amount of Corg than terrigenous sediments; whereas higher Corg burial rates were driven by higher mass accumulation rates, influenced by increased flooding and human interventions in the surroundings. Corg accumulation and long-term preservation in tropical salt marshes can be as high as in mangrove or temperate salt marsh areas and, besides the reduction of Corg stocks by ongoing sea level rise, the disturbance of the long-term buried Corg inventories might cause high CO2 releases, for which they must be protected as a part of climate change mitigation efforts.

8.
Sci Total Environ ; 468-469: 677-87, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24061059

ABSTRACT

The accumulation, enrichment and provenance of selected trace metals (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, V and Zn) were studied in sediment cores collected from three lakes located in the Central Mexican Plateau, selected on the basis of their contrasting degree of urbanization: Santa Elena Lake, in a rural and remote area; El Tule Lake, in a rural and slightly urbanized area; and Chapala Lake, in a highly urbanized area. Grain size, magnetic susceptibility and sedimentary constituents such as organic carbon, calcium carbonate, as well as major (Al, Fe, Mn) and minor (Ca, Li, Rb, Sr, Th) elements were analyzed to explain the concentration trends of trace metals. Factor analysis (FA) was used to assess the provenance of the trace elements. The highest metal enrichment factor (EF) above natural concentration levels was found at Chapala Lake for Ag (EF = 3.9), although other trace element EF in all lakes was <2.0, indicating slight contamination. However, the concentration levels of Cr and Ni in all lakes, Hg and Zn in Chapala Lake, Cu in El Tule Lake and As in Santa Elena Lake were above international benchmarks for which adverse effects are expected to occur frequently, even for those metals only slightly enriched (e.g. As, Cr). Through FA, the terrigenous contribution was identified as the most important source of trace metals to the three lakes, most likely related to deforestation and erosion of the surrounding areas, followed by atmospheric transport of volcanic ashes, rather than to direct sources.


Subject(s)
Environmental Monitoring/statistics & numerical data , Environmental Pollution/analysis , Geologic Sediments/chemistry , Lakes/chemistry , Lead Radioisotopes/analysis , Metals, Heavy/analysis , Environmental Monitoring/methods , Factor Analysis, Statistical , Mexico , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...