Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 2490, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291230

ABSTRACT

Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.


Subject(s)
Parkinson Disease , alpha-Synuclein , Animals , Humans , Mice , Aging/genetics , Aging/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice, Transgenic , Nerve Degeneration/pathology , Parkinson Disease/metabolism , Substantia Nigra/metabolism
2.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745346

ABSTRACT

TMEM106B is an endolysosomal transmembrane protein not only associated with multiple neurological disorders including frontotemporal dementia, Alzheimer's disease, and hypomyelinating leukodystrophy but also potentially involved in COVID-19. Additionally, recent studies have identified amyloid fibrils of C-terminal TMEM106B in both aged healthy and neurodegenerative brains. However, so far little is known about physiological functions of TMEM106B in the endolysosome and how TMEM106B is involved in a wide range of human conditions at molecular levels. Here, we performed lipidomic analysis of the brain of TMEM106B-deficient mice. We found that TMEM106B deficiency significantly decreases levels of two major classes of myelin lipids, galactosylceramide and its sulfated derivative sulfatide. Subsequent co-immunoprecipitation assay showed that TMEM106B physically interacts with galactosylceramidase. We also found that galactosyceramidase activity was significantly increased in TMEM106B-deficient brains. Thus, our results reveal a novel function of TMEM106B interacting with galactosyceramidase to regulate myelin lipid metabolism and have implications for TMEM106B-associated diseases.

3.
Sci Transl Med ; 14(647): eabi8593, 2022 06.
Article in English | MEDLINE | ID: mdl-35648810

ABSTRACT

Microglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents ß-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response. Here, we show that oral BMS-984923 effectively occupies brain mGluR5 sites visualized by [18F]FPEB positron emission tomography (PET) at doses shown to be safe in rodents and nonhuman primates. In aged mouse models of AD (APPswe/PS1ΔE9 overexpressing transgenic and AppNL-G-F/hMapt double knock-in), SAM treatment fully restored synaptic density as measured by [18F]SynVesT-1 PET for SV2A and by histology, and the therapeutic benefit persisted after drug washout. Phospho-TAU accumulation in double knock-in mice was also reduced by SAM treatment. Single-nuclei transcriptomics demonstrated that SAM treatment in both models normalized expression patterns to a far greater extent in neurons than glia. Last, treatment prevented synaptic localization of the complement component C1Q and synaptic engulfment in AD mice. Thus, selective modulation of mGluR5 reversed neuronal gene expression changes to protect synapses from damage by microglial mediators in rodents.


Subject(s)
Alzheimer Disease , Receptor, Metabotropic Glutamate 5 , Alzheimer Disease/pathology , Animals , Complement C1q/metabolism , Complement C1q/therapeutic use , Disease Models, Animal , Mice , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/therapeutic use , Synapses/metabolism
4.
Brain Commun ; 3(1): fcaa200, 2021.
Article in English | MEDLINE | ID: mdl-33796852

ABSTRACT

TMEM106B is a transmembrane protein localized to the endo-lysosomal compartment. Genome-wide association studies have identified TMEM106B as a risk modifier of Alzheimer's disease and frontotemporal lobar degeneration, especially with progranulin haploinsufficiency. We recently demonstrated that TMEM106B loss rescues progranulin null mouse phenotypes including lysosomal enzyme dysregulation, neurodegeneration and behavioural alterations. However, the reason whether TMEM106B is involved in other neurodegenerative lysosomal diseases is unknown. Here, we evaluate the potential role of TMEM106B in modifying the progression of lysosomal storage disorders using progranulin-independent models of Gaucher disease and neuronal ceroid lipofuscinosis. To study Gaucher disease, we employ a pharmacological approach using the inhibitor conduritol B epoxide in wild-type and hypomorphic Tmem106b-/- mice. TMEM106B depletion ameliorates neuronal degeneration and some behavioural abnormalities in the pharmacological model of Gaucher disease, similar to its effect on certain progranulin null phenotypes. In order to examine the role of TMEM106B in neuronal ceroid lipofuscinosis, we crossbred Tmem106b-/- mice with Ppt1-/-, a genetic model of the disease. In contrast to its conduritol B epoxide-rescuing effect, TMEM106B loss exacerbates Purkinje cell degeneration and motor deficits in Ppt1-/- mice. Mechanistically, TMEM106B is known to interact with subunits of the vacuolar ATPase and influence lysosomal acidification. In the pharmacological Gaucher disease model, the acidified lysosomal compartment is enhanced and TMEM106B loss rescues in vivo phenotypes. In contrast, gene-edited neuronal loss of Ppt1 causes a reduction in vacuolar ATPase levels and impairment of the acidified lysosomal compartment, and TMEM106B deletion exacerbates the mouse Ppt1-/- phenotype. Our findings indicate that TMEM106B differentially modulates the progression of the lysosomal storage disorders Gaucher disease and neuronal ceroid lipofuscinosis. The effect of TMEM106B in neurodegeneration varies depending on vacuolar ATPase state and modulation of lysosomal pH. These data suggest TMEM106B as a target for correcting lysosomal pH alterations, and in particular for therapeutic intervention in Gaucher disease and neuronal ceroid lipofuscinosis.

5.
Sci Transl Med ; 11(506)2019 08 21.
Article in English | MEDLINE | ID: mdl-31434754

ABSTRACT

Niemann-Pick disease type A (NPD-A) is a lysosomal storage disorder characterized by neurodegeneration and early death. It is caused by loss-of-function mutations in the gene encoding for acid sphingomyelinase (ASM), which hydrolyzes sphingomyelin into ceramide. Here, we evaluated the safety of cerebellomedullary (CM) cistern injection of adeno-associated viral vector serotype 9 encoding human ASM (AAV9-hASM) in nonhuman primates (NHP). We also evaluated its therapeutic benefit in a mouse model of the disease (ASM-KO mice). We found that CM injection in NHP resulted in widespread transgene expression within brain and spinal cord cells without signs of toxicity. CM injection in the ASM-KO mouse model resulted in hASM expression in cerebrospinal fluid and in different brain areas without triggering an inflammatory response. In contrast, direct cerebellar injection of AAV9-hASM triggered immune response. We also identified a minimally effective therapeutic dose for CM injection of AAV9-hASM in mice. Two months after administration, the treatment prevented motor and memory impairment, sphingomyelin (SM) accumulation, lysosomal enlargement, and neuronal death in ASM-KO mice. ASM activity was also detected in plasma from AAV9-hASM CM-injected ASM-KO mice, along with reduced SM amount and decreased inflammation in the liver. Our results support CM injection for future AAV9-based clinical trials in NPD-A as well as other lysosomal storage brain disorders.


Subject(s)
Dependovirus/metabolism , Genetic Therapy , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/therapy , Serogroup , Animals , Brain/metabolism , Brain/pathology , Humans , Inflammation/pathology , Injections , Liver/pathology , Mice, Knockout , Motor Activity , Primates , Sphingomyelin Phosphodiesterase/administration & dosage , Sphingomyelin Phosphodiesterase/blood , Sphingomyelin Phosphodiesterase/genetics , Transgenes
6.
EMBO J ; 38(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30530526

ABSTRACT

Neuropathic lysosomal storage disorders (LSDs) present with activated pro-inflammatory microglia. However, anti-inflammatory treatment failed to improve disease pathology. We characterise the mechanisms underlying microglia activation in Niemann-Pick disease type A (NPA). We establish that an NPA patient and the acid sphingomyelinase knockout (ASMko) mouse model show amoeboid microglia in neurodegeneration-prone areas. In vivo microglia ablation worsens disease progression in ASMko mice. We demonstrate the coexistence of different microglia phenotypes in ASMko brains that produce cytokines or counteract neuronal death by clearing myelin debris. Overloading microglial lysosomes through myelin debris accumulation and sphingomyelin build-up induces lysosomal damage and cathepsin B extracellular release by lysosomal exocytosis. Inhibition of cathepsin B prevents neuronal death and behavioural anomalies in ASMko mice. Similar microglia phenotypes occur in a Niemann-Pick disease type C mouse model and patient. Our results show a protective function for microglia in LSDs and how this is corrupted by lipid lysosomal overload. Data indicate cathepsin B as a key molecule mediating neurodegeneration, opening research pathways for therapeutic targeting of LSDs and other demyelinating diseases.


Subject(s)
Cathepsin B/metabolism , Microglia/pathology , Niemann-Pick Disease, Type A/pathology , Sphingomyelin Phosphodiesterase/genetics , Animals , Cell Line , Child, Preschool , Disease Models, Animal , Disease Progression , Humans , Infant, Newborn , Lysosomes/metabolism , Lysosomes/pathology , Mice , Mice, Knockout , Microglia/metabolism , Niemann-Pick Disease, Type A/genetics , Phenotype , Sphingomyelins/metabolism
7.
Neurobiol Aging ; 48: 1-12, 2016 12.
Article in English | MEDLINE | ID: mdl-27622776

ABSTRACT

Cholesterol reduction at the neuronal plasma membrane has been related to age-dependent cognitive decline. We have used senescent-accelerated mice strain 8 (SAMP8), an animal model for aging, to examine the association between cholesterol loss and cognitive impairment and to test strategies to revert this process. We show that the hippocampus of SAMP8 mice presents reduced cholesterol levels and enhanced amount of its degrading enzyme Cyp46A1 (Cyp46) already at 6 months of age. Cholesterol loss accounts for the impaired long-term potentiation in these mice. Plant sterol (PSE)-enriched diet prevents long-term potentiation impairment and cognitive deficits in SAMP8 mice without altering cholesterol levels. PSE diet also reduces the abnormally high amyloid peptide levels in SAMP8 mice brains and restores membrane compartmentalization of presenilin1, the catalytic component of the amyloidogenic γ-secretase. These results highlight the influence of cholesterol loss in age-related cognitive decline and provide with a noninvasive strategy to counteract it. Our results suggest that PSE overtake cholesterol functions in the brain contributing to reduce deleterious consequences of cholesterol loss during aging.


Subject(s)
Aging/metabolism , Aging/psychology , Cholesterol/deficiency , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Dietary Supplements , Phytosterols/administration & dosage , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Cholesterol/metabolism , Cholesterol 24-Hydroxylase/metabolism , Hippocampus/enzymology , Hippocampus/metabolism , Long-Term Potentiation , Male , Mice, Inbred Strains , Models, Animal , Presenilin-1/metabolism
8.
PLoS One ; 8(9): e74244, 2013.
Article in English | MEDLINE | ID: mdl-24040215

ABSTRACT

The cellular form of the prion protein (PrP(C)) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C). In old mice, this change favors PrP(C) accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C) translocation into detergent-resistant membranes (DRMs), we looked at PrP(C) compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C) in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.


Subject(s)
Aging/metabolism , Hippocampus/metabolism , Membrane Microdomains/metabolism , Neurons/metabolism , PrPSc Proteins/metabolism , Scrapie/metabolism , Sphingomyelins/metabolism , Aging/pathology , Animals , Cholesterol/chemistry , Cholesterol/metabolism , Fumonisins/pharmacology , Hippocampus/pathology , Male , Membrane Microdomains/chemistry , Membrane Microdomains/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurons/pathology , Octoxynol/pharmacology , PrPSc Proteins/chemistry , Primary Cell Culture , Protein Folding , Scrapie/pathology , Sphingomyelin Phosphodiesterase/deficiency , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelins/chemistry , Synaptosomes/chemistry , Synaptosomes/drug effects , Synaptosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...