Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Macromolecules ; 56(20): 8199-8213, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37900097

ABSTRACT

In this work, poly(hexamethylene-ran-octamethylene carbonate) copolycarbonates were synthesized by melt polycondensation in a wide range of compositions. The copolymers displayed some of the characteristic isodimorphic thermal behavior, such as crystallization for all the compositions and a pseudoeutectic behavior of the melting temperature (Tm) versus composition. The pseudoeutectic point was located at 33 mol % poly(octamethylene carbonate) (POC) content (i.e., corresponding to the PH67O33C copolymer). Surprisingly, the crystallinities (Xc) for a wide range of copolymer compositions were higher than those of the parent components, a phenomenon that has not been observed before in isodimorphic random copolymers. The structural characterization, performed by wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering experiments, revealed unexpected results depending on composition. On the one hand, the poly(hexamethylene carbonate) (PHC)- and POC-rich copolymers crystallize in PHC- and POC-type crystals, as expected. Moreover, upon cooling and heating, in situ WAXS experiments evidenced that these materials undergo reversible solid-solid transitions [δ-α (PHC) and δ-α-ß (POC)] present in the parent components but at lower temperatures. On the other hand, a novel behavior was found for copolymers with 33-73 mol % POC (including the pseudoeutectic point), which are those with higher crystallinities than the parent components. For these copolymers, a new crystalline phase that is different from that of both homopolymers was observed. The in situ WAXS results for these copolymers confirmed that this novel phase is stable upon cooling and heating and does not show any crystallographic feature of the parent components or their solid-solid transitions. FTIR experiments confirmed this behavior, revealing that the new phase adopts a polyethylene-like chain conformation that differs from the trans-dominant ones exhibited by the parent components. This finding challenges the established concepts of isodimorphism and questions whether a combination of crystallization modes (isodimorphism and isomorphism) is possible in the same family of random copolymers just by changing the composition.

2.
ACS Appl Mater Interfaces ; 13(49): 59206-59220, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34851623

ABSTRACT

Free-standing nanopapers based on graphene and its related materials have been widely studied and proposed for flexible heat spreader applications. Given that these materials are typically brittle, this work reports the exploitation of polycaprolactone (PCL) as a polymer binder to enhance resistance and flexibility of nanopapers based on graphite nanoplates (GNP), while maintaining a high thermal conductivity. Properties of nanopapers appear to correlate with the excellent PCL adhesion and strong nucleation of the surface of GNP flakes. Furthermore, different crystalline populations were observed for PCL within the nanopaper and were investigated in detail via differential scanning calorimetry advanced techniques and X-ray diffraction. These demonstrated the coexistence of conventional unoriented PCL crystals, oriented PCL crystals obtained as a consequence of the strong nucleation effect, and highly stable PCL fractions explained by the formation of crystalline pre-freezing layers, the latter having melting temperatures well above the equilibrium melting temperature for pristine PCL. This peculiar crystallization behavior of PCL, reported in this paper for the first time for a tridimensional structure, has a direct impact on material properties. Indeed, the presence of high thermal stability crystals, strongly bound to GNP flakes, coexisting with the highly flexible amorphous fraction, delivers an ideal solution for the strengthening and toughening of GNP nanopapers. Thermomechanical properties of PCL/GNP nanopapers, investigated both on a heating ramp and by creep tests at high temperatures, demonstrated superior stiffness well above the conventional melting temperature of PCL. At the same time, a thermal conductivity > 150 W/m·K was obtained for PCL/GNP nanopapers, representing a viable alternative to traditional metals in terms of heat dissipation, while affording flexibility and light weight, unmatched by conventional thermally conductive metals or ceramics. Besides the obtained performance, the formation of polymer crystals that are stable above the equilibrium melting temperature constitutes a novel approach in the self-assembly of highly ordered nanostructures based on graphene and related materials.

3.
Int J Biol Macromol ; 186: 255-267, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34246673

ABSTRACT

Polylactide is one of the most versatile biopolymers, but its slow crystallization limits its temperature usage range. Hence finding ways to enhance it is crucial to widen its applications. Linear and cyclic poly (L-lactide) (l-PLLA and c-PLLA) of similarly low molecular weights (MW) were synthesized by ring-opening polymerization of L-lactide, and ring-expansion methodology, respectively. Two types of blends were prepared by solution mixing: (a) l-PLLA/c-PLLA, at extreme compositions (rich in linear or in cyclic chains), and (b) blends of each of these low MW materials with a commercial high MW linear PLA. The crystallization of the different blends was evaluated by polarized light optical microscopy and differential scanning calorimetry. It was found, for the first time, that in the l-PLLA rich blends, small amounts of c-PLLA (i.e., 5 and 10 wt%) increase the nucleation density, nucleation rate (1/τ0), spherulitic growth rate (G), and overall crystallization rate (1/τ50%), when compared to neat l-PLLA, due to a synergistic effect (i.e., nucleation plus plasticization). In contrast, the opposite effect was found in the c-PLLA rich blends. The addition of small amounts of l-PLLA to a matrix of c-PLLA chains causes a decrease in the nucleation density, 1/τ0, G, and 1/τ50% values, due to threading effects between cyclic and linear chains. Small amounts of l-PLLA and c-PLLA enhance the crystallization ability of a commercial high MW linear PLA without affecting its melting temperature. The l-PLLA only acts as a plasticizer for the PLA matrix, whereas c-PLLA has a synergistic effect in accelerating the crystallization of PLA that goes beyond simple plasticization. The addition of small amounts of c-PLLA affects not only PLA crystal growth but also its nucleation due to the unique cyclic chains topology.


Subject(s)
Plasticizers/chemistry , Polyesters/chemistry , Crystallization , Kinetics , Models, Molecular , Molecular Conformation , Molecular Weight , Temperature
4.
Macromolecules ; 52(23): 9186-9198, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31866692

ABSTRACT

We previously showed that nanoparticles (NPs) could be ordered into structures by using the growth rate of polymer crystals as the control variable. In particular, for slow enough spherulitic growth fronts, the NPs grafted with amorphous polymer chains are selectively moved into the interlamellar, interfibrillar, and interspherulitic zones of a lamellar morphology, specifically going from interlamellar to interspherulitic with progressively decreasing crystal growth rates. Here, we examine the effect of NP polymer grafting density on crystallization kinetics. We find that while crystal nucleation is practically unaffected by the presence of the NPs, spherulitic growth, final crystallinity, and melting point values decrease uniformly as the volume fraction of the crystallizable polymer, poly(ethylene oxide) or PEO, ϕPEO, decreases. A surprising aspect here is that these results are apparently unaffected by variations in the relative amounts of the amorphous polymer graft and silica NPs at constant ϕ, implying that chemical details of the amorphous defect apparently only play a secondary role. We therefore propose that the grafted NPs in this size range only provide geometrical confinement effects which serve to set the crystal growth rates and melting point depressions without causing any changes to crystallization mechanisms.

5.
Polymers (Basel) ; 10(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-30966459

ABSTRACT

In this study, nanocomposites were prepared by melt blending poly(butylene succinate) (PBS) with a polycarbonate (PC)/multi-wall carbon nanotubes (MWCNTs) masterbatch, in a twin-screw extruder. The nanocomposites contained 0.5, 1.0, 2.0, and 4.0 wt% MWCNTs. Differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) results indicate that the blends are partially miscible, hence they form two phases (i.e., PC-rich and PBS-rich phases). The PC-rich phase contained a small amount of PBS chains that acted as a plasticizer and enabled crystallization of the PC component. In the PBS-rich phase, the amount of the PC chains present gave rise to increases in the glass transition temperature of the PBS phase. The presence of two phases was supported by scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis, where most MWCNTs aggregated in the PC-rich phase (especially at the high MWCNTs content of 4 wt%) and a small amount of MWCNTs were able to diffuse to the PBS-rich phase. Standard DSC scans showed that the MWCNTs nucleation effects saturated at 0.5 wt% MWCNT content on the PBS-rich phase, above this content a negative nucleation effect was observed. Isothermal crystallization results indicated that with 0.5 wt% MWCNTs the crystallization rate was accelerated, but further increases in MWCNTs loading (and also in PC content) resulted in progressive decreases in crystallization rate. The results are explained by increased MWCNTs aggregation and reduced diffusion rates of PBS chains, as the masterbatch content in the blends increased.

6.
Polymers (Basel) ; 9(12)2017 Dec 13.
Article in English | MEDLINE | ID: mdl-30966008

ABSTRACT

In this study, nanocomposites were prepared by melt blending poly (ε-caprolactone) (PCL) with a (polycarbonate (PC)/multi-wall carbon nanotubes (MWCNTs)) masterbatch in a twin-screw extruder. The nanocomposites contained 0.5, 1.0, 2.0, and 4.0 wt % MWCNTs. Even though PCL and PC have been reported to be miscible, our DSC (Differential Scanning Calorimetry), SAXS (Small Angle X-ray Scattering), and WAXS (Wide Angle X-ray Scattering) results showed partial miscibility, where two phases were formed (PC-rich and PCL-rich phases). In the PC-rich phase, the small amount of PCL chains included within this phase plasticized the PC component and the PC-rich phase was therefore able to crystallize. In contrast, in the PCL-rich phase the amount of PC chains present generates changes in the glass transition temperature of the PCL phase that were much smaller than those predicted by the Fox equation. The presence of two phases was corroborated by SEM, TEM, and AFM observations where a fair number of MWCNTs diffused from the PC-rich phase to the PCL-rich phase, even though there were some MWCNTs agglomerates confined to PC-rich droplets. Standard DSC measurements demonstrated that the MWCNTs nucleation effects are saturated at a 1 wt % MWCNT concentration on the PCL-rich phase. This is consistent with the dielectric percolation threshold, which was found to be between 0.5 and 1 wt % MWCNTs. However, the nucleating efficiency was lower than literature reports for PCL/MWCNTs, due to limited phase mixing between the PC-rich and the PCL-rich phases. Isothermal crystallization experiments performed by DSC showed an increase in the overall crystallization kinetics of PCL with increases in MWCNTs as a result of their nucleating effect. Nevertheless, the crystallinity degree of the nanocomposite containing 4 wt % MWCNTs decreased by about 15% in comparison to neat PCL. This was attributed to the presence of the PC-rich phase, which was able to crystallize in view of the plasticization effect of the PCL component, since as the MWCNT content increases, the PC content in the blend also increases. The thermal conductivities (i.e., 4 wt % MWCNTs) were enhanced by 20% in comparison to the neat material. The nanocomposites prepared in this work could be employed in applications were electrical conductivity is required, as well as lightweight and tailored mechanical properties.

7.
Macromolecules ; 50(23): 9380-9393, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29296028

ABSTRACT

The ring-opening polymerization of cyclic butylene terephthalate into poly(butylene terephthalate) (pCBT) in the presence of reduced graphene oxide (RGO) is an effective method for the preparation of polymer nanocomposites. The inclusion of RGO nanoflakes dramatically affects the crystallization of pCBT, shifting crystallization peak temperature to higher temperatures and, overall, increasing the crystallization rate. This was due to a supernucleating effect caused by RGO, which is maximized by highly reduced graphene oxide. Furthermore, combined analyses by differential scanning calorimetry (DSC) experiments and wide-angle X-ray diffraction (WAXS) showed the formation of a thick α-crystalline form pCBT lamellae with a melting point of ∼250 °C, close to the equilibrium melting temperature of pCBT. WAXS also demonstrated the pair orientation of pCBT crystals with RGO nanoflakes, indicating a strong interfacial interaction between the aromatic rings of pCBT and RGO planes, especially with highly reduced graphene oxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...