Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Commun Biol ; 6(1): 934, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699971

ABSTRACT

Coral mortality triggers the loss of carbonates fixed within coral skeletons, compromising the reef matrix. Here, we estimate rates of carbonate loss in newly deceased colonies of four Caribbean reef-building corals. We use samples from living and recently deceased colonies following a stony coral tissue loss disease (SCTLD) outbreak. Optical densitometry and porosity analyses reveal a loss of up to 40% of the calcium carbonate (CaCO3) content in dead colonies. The metabolic activity of the endolithic organisms colonizing the dead skeletons is likely partially responsible for the observed dissolution. To test for the consequences of mass mortality events over larger spatial scales, we integrate our estimates of carbonate loss with field data of the composition and size structure of coral communities. The dissolution rate depends on the relative abundance of coral species and the structural properties of their skeletons, yet we estimate an average reduction of 1.33 kg CaCO3 m-2, nearly 7% of the total amount of CaCO3 sequestered in the entire system. Our findings highlight the importance of including biological and chemical processes of CaCO3 dissolution in reef carbonate budgets, particularly as the impacts of global warming, ocean acidification, and disease likely enhance dissolution processes.


Subject(s)
Anthozoa , Seawater , Animals , Hydrogen-Ion Concentration , Caribbean Region , Carbonates
2.
Glob Chang Biol ; 29(12): 3285-3303, 2023 06.
Article in English | MEDLINE | ID: mdl-36932916

ABSTRACT

Rapidly changing conditions alter disturbance patterns, highlighting the need to better understand how the transition from pulse disturbances to more persistent stress will impact ecosystem dynamics. We conducted a global analysis of the impacts of 11 types of disturbances on reef integrity using the rate of change of coral cover as a measure of damage. Then, we evaluated how the magnitude of the damage due to thermal stress, cyclones, and diseases varied among tropical Atlantic and Indo-Pacific reefs and whether the cumulative impact of thermal stress and cyclones was able to modulate the responses of reefs to future events. We found that reef damage largely depends on the condition of a reef before a disturbance, disturbance intensity, and biogeographic region, regardless of the type of disturbance. Changes in coral cover after thermal stress events were largely influenced by the cumulative stress of past disturbances and did not depend on disturbance intensity or initial coral cover, which suggests that an ecological memory is present within coral communities. In contrast, the effect of cyclones (and likely other physical impacts) was primarily modulated by the initial reef condition and did not appear to be influenced by previous impacts. Our findings also underscore that coral reefs can recover if stressful conditions decrease, yet the lack of action to reduce anthropogenic impacts and greenhouse gas emissions continues to trigger reef degradation. We uphold that evidence-based strategies can guide managers to make better decisions to prepare for future disturbances.


Subject(s)
Anthozoa , Cyclonic Storms , Animals , Coral Reefs , Ecosystem , Anthropogenic Effects , Anthozoa/physiology
3.
Commun Biol ; 5(1): 440, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681037

ABSTRACT

Diseases are major drivers of the deterioration of coral reefs and are linked to major declines in coral abundance, reef functionality, and reef-related ecosystems services. An outbreak of a new disease is currently rampaging through the populations of the remaining reef-building corals across the Caribbean region. The outbreak was first reported in Florida in 2014 and reached the northern Mesoamerican Reef by summer 2018, where it spread across the ~450-km reef system in only a few months. Rapid spread was generalized across all sites and mortality rates ranged from 94% to <10% among the 21 afflicted coral species. Most species of the family Meandrinadae (maze corals) and subfamily Faviinae (brain corals) sustained losses >50%. This single event further modified the coral communities across the region by increasing the relative dominance of weedy corals and reducing reef functionality, both in terms of functional diversity and calcium carbonate production. This emergent disease is likely to become the most lethal disturbance ever recorded in the Caribbean, and it will likely result in the onset of a new functional regime where key reef-building and complex branching acroporids, an apparently unaffected genus that underwent severe population declines decades ago and retained low population levels, will once again become conspicuous structural features in reef systems with yet even lower levels of physical functionality.


Subject(s)
Anthozoa , Animals , Caribbean Region , Coral Reefs , Ecosystem , Seasons
4.
Data Brief ; 42: 108253, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35599817

ABSTRACT

Noticeable within the Mexican Caribbean is the Arrecife de Puerto Morelos National Park (APMNP), a marine protected area established as an essential component for managing and protecting coral reefs. In June 2019, we conducted a survey in eight shallow reef sites of the APMNP with the purpose of applying a coral reef assessment method, based on biological indicators of the condition of both benthos and fish communities. In this paper we present tables with data of biological and ecological variables such as: benthos coverage, species composition and abundance of corals, abundance of urchins and coral recruits, bleaching, coral diseases and coral mortality percent, reef relief, and composition and abundance of key commercial and herbivorous fish species. The research article related to these databases was published in the journal Diversity with the title: Puerto Morelos coral reefs, current state and their classification by a scoring system.

5.
PeerJ ; 10: e12590, 2022.
Article in English | MEDLINE | ID: mdl-35310164

ABSTRACT

The development of coral reefs results from the interaction between ecological and geological processes in space and time. Their difference in scale, however, makes it difficult to detect the impact of ecological changes on geological reef development. The decline of coral cover over the last 50 years, for example, has dramatically impaired the function of ecological processes on reefs. Yet given the limited-resolution of their Holocene record, it is uncertain how this will impact accretion and structural integrity over longer timescales. In addition, reports of this ecological decline have focused on intrinsic parameters such as coral cover and colony size at the expense of extrinsic ones such as geomorphic and environmental variables. Despite these problems, several attempts have been made to predict the long-term accretion status of reefs based entirely on the contemporary health status of benthic communities. Here we explore how this ecological decline is represented within the reef geomorphic structure, which represents the long-term expression of reef development. Using a detailed geomorphic zonation scheme, we analyze the distribution and biodiversity of reef-building corals in fringing-reef systems of the Mesoamerican Reef tract. We find a depth-related pattern in community structure which shows that the relative species distribution between geomorphic zones is statistically different. Despite these differences, contemporary coral assemblages in all zones are dominated by the same group of pioneer generalist species. These findings imply that first, coral species distribution is still controlled by extrinsic processes that generate the geomorphic zonation; second, that coral biodiversity still reflects species zonation patterns reported by early studies; and third that dominance of pioneer species implies that modern coral assemblages are in a prolonged post-disturbance adjustment stage. In conclusion, any accurate assessment of the future viability of reefs requires a consideration of the geomorphic context or risks miscalculating the impact of ecological changes on long-term reef development.


Subject(s)
Anthozoa , Animals , Ecosystem , Coral Reefs , Biodiversity , Caribbean Region
6.
Sci Rep ; 10(1): 8897, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483234

ABSTRACT

Coral reefs in the wider Caribbean declined in hard coral cover by ~80% since the 1970s, but spatiotemporal analyses for sub-regions are lacking. Here, we explored benthic change patterns in the Mexican Caribbean reefs through meta-analysis between 1978 and 2016 including 125 coral reef sites. Findings revealed that hard coral cover decreased from ~26% in the 1970s to 16% in 2016, whereas macroalgae cover increased to ~30% in 2016. Both groups showed high spatiotemporal variability. Hard coral cover declined in total by 12% from 1978 to 2004 but increased again by 5% between 2005 and 2016 indicating some coral recovery after the 2005 mass bleaching event and hurricane impacts. In 2016, more than 80% of studied reefs were dominated by macroalgae, while only 15% were dominated by hard corals. This stands in contrast to 1978 when all reef sites surveyed were dominated by hard corals. This study is among the first within the Caribbean region that reports local recovery in coral cover in the Caribbean, while other Caribbean reefs have failed to recover. Most Mexican Caribbean coral reefs are now no longer dominated by hard corals. In order to prevent further reef degradation, viable and reliable conservation alternatives are required.


Subject(s)
Anthozoa/growth & development , Seaweed/growth & development , Animals , Caribbean Region , Coral Reefs , Mexico , Population Density , Spatio-Temporal Analysis
7.
PeerJ ; 7: e8069, 2019.
Article in English | MEDLINE | ID: mdl-31788355

ABSTRACT

Caribbean reef corals have experienced unprecedented declines from climate change, anthropogenic stressors and infectious diseases in recent decades. Since 2014, a highly lethal, new disease, called stony coral tissue loss disease, has impacted many reef-coral species in Florida. During the summer of 2018, we noticed an anomalously high disease prevalence affecting different coral species in the northern portion of the Mexican Caribbean. We assessed the severity of this outbreak in 2018/2019 using the AGRRA coral protocol to survey 82 reef sites across the Mexican Caribbean. Then, using a subset of 14 sites, we detailed information from before the outbreak (2016/2017) to explore the consequences of the disease on the condition and composition of coral communities. Our findings show that the disease outbreak has already spread across the entire region by affecting similar species (with similar disease patterns) to those previously described for Florida. However, we observed a great variability in prevalence and tissue mortality that was not attributable to any geographical gradient. Using long-term data, we determined that there is no evidence of such high coral disease prevalence anywhere in the region before 2018, which suggests that the entire Mexican Caribbean was afflicted by the disease within a few months. The analysis of sites that contained pre-outbreak information showed that this event considerably increased coral mortality and severely changed the structure of coral communities in the region. Given the high prevalence and lethality of this disease, and the high number of susceptible species, we encourage reef researchers, managers and stakeholders across the Western Atlantic to accord it the highest priority for the near future.

8.
J Eukaryot Microbiol ; 66(2): 254-266, 2019 03.
Article in English | MEDLINE | ID: mdl-30027647

ABSTRACT

Two genes of the RACK1 homolog from the photosynthetic dinoflagellate Symbiodinium microadriaticum ssp. microadriaticum (SmicRACK1), termed SmicRACK1A and SmicRACK1B, were found tandemly arrayed and displayed a single synonymous substitution (T/C) encoding threonine. They included two exons of 942 bp each, encoding 313 amino acids with seven WD-40 repeats and two PKC-binding motifs. The protein theoretical mass and pI were 34,200 Da and 5.9, respectively. SmicRACK1 showed maximum identities with RACK1 homologs at the amino acid and nucleotide level, respectively, of 92 and 84% with S. minutum, and phylogenetic analysis revealed clustered related RACK1 sequences from the marine dinoflagellates S. minutum, Heterocapsa triquetra, Karenia brevis, and Alexandrium tamarense. Interestingly, light-dependent regulatory elements were found both within the 282 bp SmicRACK1A promotor sequence, and within an intergenic sequence of 359 nucleotides that separated both genes, which strongly suggest light-related functions. This was further supported by mRNA accumulation analysis, which fluctuated along the light and dark phases of the growth cycle showing maximum specific peaks under either condition. Finally, qRT-PCR analysis revealed differential SmicRACK1 mRNA accumulation with maxima at 6 and 20 d of culture. Our SmicRACK1 characterization suggests roles in active growth and proliferation, as well as light/dark cycle regulation in S. microadriaticum.


Subject(s)
Dinoflagellida/genetics , Gene Expression , Protozoan Proteins/genetics , RNA, Messenger/genetics , Receptors for Activated C Kinase/genetics , Algal Proteins/chemistry , Algal Proteins/genetics , Algal Proteins/metabolism , Amino Acid Sequence , Base Sequence , Dinoflagellida/metabolism , Phylogeny , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , RNA, Messenger/metabolism , Receptors for Activated C Kinase/chemistry , Receptors for Activated C Kinase/metabolism
9.
Nature ; 558(7710): 396-400, 2018 06.
Article in English | MEDLINE | ID: mdl-29904103

ABSTRACT

Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.


Subject(s)
Anthozoa/growth & development , Climate Change/statistics & numerical data , Coral Reefs , Seawater/analysis , Animals , Anthozoa/metabolism , Atlantic Ocean , Carbonates/metabolism , Indian Ocean , Models, Theoretical , Oceans and Seas
10.
Eur J Med Chem ; 45(11): 4827-37, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20801554

ABSTRACT

The synthesis of the new glycoside (25R)-3ß,16ß-diacetoxy-12,22-dioxo-5α-cholestan-26-yl ß-D-glucopyranoside starting from hecogenin is described. This compound showed anti-cancer activity against cervicouterine cancer cells HeLa, CaSki and ViBo in the micromolar range. Its effect on cell proliferation, cell cycle and cell death is also described. The cytotoxic effect of the title compound on HeLa, CaSki and ViBo cells and human lymphocytes was evaluated through the LDH released in the culture supernatant, indicating that the main cell death process is not necrosis; the null effect on lymphocytes implies that it is not cytotoxic. The ability of this novel glycoside to induce apoptosis was investigated; several apoptosis events like chromatin condensation, formation of apoptotic bodies, as well as the increase in the expression of active caspase-3 and the fragmentation of DNA confirmed that the compound induced apoptosis in cervicouterine cancer cells. Significantly, the antiproliferative activity on tumor cells did not affect the proliferative potential of normal fibroblasts from cervix and peripheral blood lymphocytes. The glycoside showed selective antitumor activity and greater antiproliferative activity than its aglycon; it therefore serves as a promising lead candidate for further optimization.


Subject(s)
Glycosides/chemical synthesis , Glycosides/pharmacology , Uterine Cervical Neoplasms/pathology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatography, Liquid , Drug Screening Assays, Antitumor , Female , Glycosides/chemistry , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...