Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 128(1): 371-380, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38156604

ABSTRACT

This study explores the impact of network functionalization and chemical composition on the pH-responsive behavior of polymer nanogels and their adsorption of proteins. Using a thermodynamic theory informed by a molecular model, this work evaluates the interactions of three proteins with varying isoelectric points (insulin, myoglobin, and cytochrome c) and pH-responsive nanogels based on methacrylic acid or allylamine motifs. Three different functionalization strategies are considered, with pH-responsive segments distributed randomly, at the center, or on the surface of the polymer network. Our results show that the spatial distribution of functional units affects both the nanogels' mechanical response to pH changes and the level and localization of adsorbed proteins. The dependence of protein adsorption on the salt concentration is also investigated, with the conclusion that it is best to encapsulate proteins at low salt concentrations and aim for release at high salt concentrations. These results provide valuable information for the design of pH-responsive nanogels as vehicles for protein encapsulation, transport, and administration.


Subject(s)
Polymers , Polymers/chemistry , Nanogels , Adsorption , Hydrogen-Ion Concentration , Isoelectric Point
2.
Soft Matter ; 16(32): 7492-7502, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32724986

ABSTRACT

Polyamines such as putrescine, spermidine and spermine are required in many inter- and intra-cellular processes. There is, however, evidence of anomalously high concentrations of these polyamines around cancer cells. Furthermore, high polyamine concentrations play a key role in accelerating the speed of cancer proliferation. Some current therapies target the reduction of the polyamine concentration to delay the cancer advance. In this study, we use a molecular theory to prove the concept that poly(methacrylic acid) (PMAA) hydrogels can play the dual role of incorporating and retaining polyamines as well as releasing preloaded drugs in response. Towards such a goal, we have developed a molecular model for each of the chemical species, which includes the shape, size, charge, protonation state, and configuration. Our results indicate that PMAA hydrogel films can incorporate significant amounts of polyamines; this absorption increases with the solution concentration of the polyamines. Doxorubicin was chosen as a model drug for this study, which can be successfully incorporated within the film; the optimal encapsulation conditions occur at low salt concentrations and pH values near neutral. Polyamine absorption within the film results in the desorption of the drug from the hydrogel. An increase in the concentration of the polyamines enhances the drug release. To validate our theoretical findings, poly(methacrylic acid) hydrogel thin films were synthesized by atom transfer radical polymerization. Absorption/desorption experiments followed by UV-Vis spectroscopy demonstrate doxorubicin encapsulation within these films and polyamine-dependent drug release.


Subject(s)
Hydrogels , Spermidine , Doxorubicin , Methylgalactosides , Polyamines , Spermine
3.
Langmuir ; 34(42): 12560-12568, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30247042

ABSTRACT

A molecular theory has been applied to study the equilibrium conditions of glyphosate and aminomethylphosphonic acid (AMPA) adsorption from aqueous solutions to hydrogel films of cross-linked polyallylamine (PAH). This theoretical framework allows for describing the size, shape, state of charge/protonation, and configurational freedom of all chemical species in the system. Adsorption of glyphosate is a nonmonotonic function of the solution pH, which results from the protonation behavior of both the adsorbate and adsorbent material. Glyphosate and chloride ions compete for adsorption to neutralize the polymer charge; lowering the solution salt concentration enhances the partition of glyphosate inside the hydrogel film. AMPA adsorption is qualitatively similar to that of glyphosate but orders of magnitude smaller under the same conditions. AMPA is less charged than glyphosate, which unbalances the competition for adsorption with salt counter ions. In mixed solutions, glyphosate presence can significantly hinder AMPA adsorption. A higher pH establishes inside the film than in the bulk solution, which has important implications for the herbicide biodegradation because microbial activity is pH-dependent. Thus, PAH hydrogel films can be considered as functional materials that combine glyphosate sequestration and in situ degradation. In devising these materials, the polymer density is an important variable of design; polymer networks with high density of titratable units can enhance adsorption; this density can also be used to modify the pH inside the material.

SELECTION OF CITATIONS
SEARCH DETAIL
...