Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(22): 227201, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101363

ABSTRACT

Dynamical fluctuations or rare events associated with atypical trajectories in chaotic maps due to specific initial conditions can crucially determine their fate, as the may lead to stability islands or regions in phase space otherwise displaying unusual behavior. Yet, finding such initial conditions is a daunting task precisely because of the chaotic nature of the system. In this Letter, we circumvent this problem by proposing a framework for finding an effective topologically conjugate map whose typical trajectories correspond to atypical ones of the original map. This is illustrated by means of examples which focus on counterbalancing the instability of fixed points and periodic orbits, as well as on the characterization of a dynamical phase transition involving the finite-time Lyapunov exponent. The procedure parallels that of the application of the generalized Doob transform in the stochastic dynamics of Markov chains, diffusive processes, and open quantum systems, which in each case results in a new process having the prescribed statistics in its stationary state. This Letter thus brings chaotic maps into the growing family of systems whose rare fluctuations-sustaining prescribed statistics of dynamical observables-can be characterized and controlled by means of a large-deviation formalism.

2.
Phys Rev E ; 104(4-1): 044134, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781446

ABSTRACT

The study of dynamical large deviations allows for a characterization of stationary states of lattice gas models out of equilibrium conditioned on averages of dynamical observables. The application of this framework to the two-dimensional random walk conditioned on partial currents reveals the existence of a dynamical phase transition between delocalized band dynamics and localized vortex dynamics. We present a numerical microscopic characterization of the phases involved and provide analytical insight based on the macroscopic fluctuation theory. A spectral analysis of the microscopic generator shows that the continuous phase transition is accompanied by spontaneous Z_{2}-symmetry breaking whereby the stationary solution loses the reflection symmetry of the generator. Dynamical phase transitions similar to this one, which do not rely on exclusion effects or interactions, are likely to be observed in more complex nonequilibrium physics models.

3.
Phys Rev E ; 104(1-1): 014108, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412360

ABSTRACT

We derive a general scheme to obtain quantum fluctuation relations for dynamical observables in open quantum systems. For concreteness, we consider Markovian nonunitary dynamics that is unraveled in terms of quantum jump trajectories and exploit techniques from the theory of large deviations like the tilted ensemble and the Doob transform. Our results here generalize to open quantum system fluctuation relations previously obtained for classical Markovian systems and add to the vast literature on fluctuation relations in the quantum domain, but without resorting to the standard two-point measurement scheme. We illustrate our findings with three examples to highlight and discuss the main features of our general result.

4.
Phys Rev E ; 103(2-1): 022319, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33735982

ABSTRACT

Numerous problems of both theoretical and practical interest are related to finding shortest (or otherwise optimal) paths in networks, frequently in the presence of some obstacles or constraints. A somewhat related class of problems focuses on finding optimal distributions of weights which, for a given connection topology, maximize some kind of flow or minimize a given cost function. We show that both sets of problems can be approached through an analysis of the large-deviation functions of random walks. Specifically, a study of ensembles of trajectories allows us to find optimal paths, or design optimal weighted networks, by means of an auxiliary stochastic process (the generalized Doob transform). The paths are not limited to shortest paths, and the weights must not necessarily optimize a given function. Paths and weights can in fact be tailored to a given statistics of a time-integrated observable, which may be an activity or current, or local functions marking the passing of the random walker through a given node or link. We illustrate this idea with an exploration of optimal paths in the presence of obstacles, and networks that optimize flows under constraints on local observables.

5.
Phys Rev E ; 102(3-1): 030104, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33076006

ABSTRACT

Controlling dynamical fluctuations in open quantum systems is essential both for our comprehension of quantum nonequilibrium behavior and for its possible application in near-term quantum technologies. However, understanding these fluctuations is extremely challenging due, to a large extent, to a lack of efficient important sampling methods for quantum systems. Here, we devise a unified framework-based on population-dynamics methods-for the evaluation of the full probability distribution of generic time-integrated observables in Markovian quantum jump processes. These include quantities carrying information about genuine quantum features, such as quantum superposition or entanglement, not accessible with existing numerical techniques. The algorithm we propose provides dynamical free-energy and entropy functionals which, akin to their equilibrium counterpart, permit one to unveil intriguing phase-transition behavior in quantum trajectories. We discuss some applications and further disclose coexistence and hysteresis, between a highly entangled phase and a low entangled one, in large fluctuations of a strongly interacting few-body system.

6.
Phys Rev E ; 101(6-1): 062142, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688517

ABSTRACT

We extend previous work to describe a class of fluctuation relations (FRs) that emerge as a consequence of symmetries at the level of stochastic trajectories in Markov chains. We prove that given such a symmetry, and for a suitable dynamical observable, it is always possible to obtain a FR under a biased dynamics corresponding to the so-called generalized Doob transform. The general transformations of the dynamics that we consider go beyond time-reversal or spatial isometries, and an implication is the existence of FRs for observables irrespective of their behavior under time reversal, for example for time-symmetric observables rather than currents. We further show how to deduce in the long-time limit these FRs from the symmetry properties of the generator of the dynamics. We illustrate our results with four examples that highlight the novel features of our work.

7.
Chaos ; 29(8): 083106, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472495

ABSTRACT

Interacting particle systems with many degrees of freedom may undergo phase transitions to sustain atypical fluctuations of dynamical observables such as the current or the activity. In some cases, this leads to symmetry-broken space-time trajectories which enhance the probability of such events due to the emergence of ordered structures. Despite their conceptual and practical importance, these dynamical phase transitions (DPTs) at the trajectory level are difficult to characterize due to the low probability of their occurrence. However, during the last decade, advanced computational techniques have been developed to measure rare events in simulations of many-particle systems that allow the direct observation and characterization of these DPTs. Here we review the application of a particular rare-event simulation technique, based on cloning Monte Carlo methods, to characterize DPTs in paradigmatic stochastic lattice gases. In particular, we describe in detail some tricks and tips of the trade, paying special attention to the measurement of order parameters capturing the physics of the different DPTs, as well as to the finite-size effects (both in the system size and in the number of clones) that affect the measurements. Overall, we provide a consistent picture of the phenomenology associated with DPTs and their measurement.

8.
Phys Rev Lett ; 119(14): 140401, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29053308

ABSTRACT

We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

9.
Phys Rev E ; 96(5-1): 052118, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29347714

ABSTRACT

We consider a class of either fermionic or bosonic noninteracting open quantum chains driven by dissipative interactions at the boundaries and study the interplay of coherent transport and dissipative processes, such as bulk dephasing and diffusion. Starting from the microscopic formulation, we show that the dynamics on large scales can be described in terms of fluctuating hydrodynamics. This is an important simplification as it allows us to apply the methods of macroscopic fluctuation theory to compute the large deviation (LD) statistics of time-integrated currents. In particular, this permits us to show that fermionic open chains display a third-order dynamical phase transition in LD functions. We show that this transition is manifested in a singular change in the structure of trajectories: while typical trajectories are diffusive, rare trajectories associated with atypical currents are ballistic and hyperuniform in their spatial structure. We confirm these results by numerically simulating ensembles of rare trajectories via the cloning method, and by exact numerical diagonalization of the microscopic quantum generator.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 1): 031135, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22587066

ABSTRACT

The probability distribution function for an out of equilibrium system may sometimes be approximated by a physically motivated "trial" distribution. A particularly interesting case is when a driven system (e.g., active matter) is approximated by a thermodynamic one. We show here that every set of trial distributions yields an inequality playing the role of a generalization of the second law. The better the approximation is, the more constraining the inequality becomes: this suggests a criterion for its accuracy, as well as an optimization procedure that may be implemented numerically and even experimentally. The fluctuation relation behind this inequality, a natural and practical extension of the Hatano-Sasa theorem, does not rely on the a priori knowledge of the stationary probability distribution.


Subject(s)
Algorithms , Models, Statistical , Thermodynamics , Computer Simulation
11.
Proc Natl Acad Sci U S A ; 108(19): 7704-9, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21493865

ABSTRACT

Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...