Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 203: 113410, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36030904

ABSTRACT

An infusion from the aerial parts of Justicia spicigera Schltdl., an herb commonly used to treat diabetes, inhibited the activity of protein tyrosine phosphatase 1B (PTP1B). Two undescribed compounds, 2-N-(p-coumaroyl)-3H-phenoxazin-3-one, and 3″-O-acetyl-kaempferitrin, along with kaempferitrin, kaempferol 7-O-α-L-rhamnopyranoside, perisbivalvine B and 2,5-dimethoxy-p-benzoquinone were isolated from the active extract. Their structures were elucidated by a combination of spectroscopic and spectrometric methods. The isolates were evaluated for their inhibitory activity against PTP1B; the most active compounds were 2-N-(p-coumaroyl)-3H-phenoxazin-3-one, and perisbivalvine B with IC50 values of 159.1 ± 0.02 µM and 106.6 ± 0.01 µM, respectively. However, perisbivalvine B was unstable. Kinetic analysis of 2-N-(p-coumaroyl)-3H-phenoxazin-3-one and 2,5-dimethoxy-p-benzoquinone (obtained in good amounts) indicated that both compounds behaved as parabolic competitive inhibitors and bind to the enzyme forming complexes with 1:1 and 1:2 stoichiometry. Docking of 2-N-(p-coumaroyl)-3H-phenoxazin-3-one and 2,5-dimethoxy-p-benzoquinone to PTP1B1-400 predicted a good affinity of these compounds for PTP1B catalytic site and demonstrated that the binding of a second ligand is sterically possible. The 1:2 complex was also supported by the second docking analysis, which predicted an important contribution of π-stacking interactions to the stability of these 1:2 complexes. Finally, an UHPLC-MS method was developed and validated to quantify the content of kaempferitrin in the infusion of the plant.


Subject(s)
Acanthaceae , Justicia , Benzoquinones , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Kaempferols/pharmacology , Kinetics , Ligands , Molecular Docking Simulation , Plant Extracts/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 1
SELECTION OF CITATIONS
SEARCH DETAIL
...