Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 197: 106443, 2024 May.
Article in English | MEDLINE | ID: mdl-38507985

ABSTRACT

Natural disturbances can produce a mosaic of seagrass patches of different ages, which may affect the response to herbivory. These pressures can have consequences for plant performance. To assess how seagrass patch age affects the response to herbivory, we simulated the effect of herbivory by clipping leaves of Halodule wrightii in patches of 2, 4 and 6 years. All clipped plants showed ability to compensate herbivory by increasing leaf growth rate (on average 4.5-fold). The oldest patches showed resistance response by increasing phenolic compounds (1.2-fold). Contrastingly, the concentration of phenolics decreased in the youngest patches (0.26-fold), although they had a similar leaf carbon content to controls. These results suggest that younger plants facing herbivory pressure reallocate their phenolic compounds towards primary metabolism. Results confirm the H. wrightii tolerance to herbivory damage and provides evidence of age-dependent compensatory responses, which may have consequences for seagrass colonization and growth in perturbed habitats.


Subject(s)
Alismatales , Herbivory , Ecosystem , Alismatales/physiology , Plants , Plant Leaves/metabolism
2.
Mar Environ Res ; 191: 106136, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37591164

ABSTRACT

Seagrass meadows are highly dynamic, particularly in sites where extreme climatological events may produce a mosaic of patches with different ages. This study evaluates the community carbon metabolism, dissolved organic carbon (DOC) fluxes and associated fauna in patches of Halodule wrightii with different ages since establishment. Net community production declined as patch age increased, probably due to the increase in non-photosynthetic tissues, higher respiration rates of the community assemblage and a likely increase in self-shading of the canopy. The export of DOC was significantly higher in the youngest patches, mainly as a consequence of the lower seagrass net production recorded in older meadows. We concluded that 'colonizers' seagrass species may show higher production rates and DOC release during the first stages of colonization, which suggest that, the production, organic carbon exportation and their role as relevant blue carbon communities may be higher than expected.


Subject(s)
Alismatales , Ecosystem , Dissolved Organic Matter , Carbon/metabolism , California
3.
Zookeys ; 873: 113-131, 2019.
Article in English | MEDLINE | ID: mdl-31534388

ABSTRACT

The first record of the amphioxus Branchiostoma californiense on seagrass patches of Halodule wrightii in the Gulf of California is reported. Sixty individuals (19 males, 18 females, and 23 undifferentiated) were collected in May 2017 at Bahía Balandra, Gulf of California, from subtidal seagrass patches at a depth of 0.5 m at low tide. The length and weight ranged from 15.88-28.44 mm and from 0.01-0.11 g for females and 11.7-27.9 mm and 0.01-0.09 g for males, respectively. The minimum size of sexually mature individuals was 11.70 mm for males and 15.88 mm for females; 62% of the specimens were sexually mature. Analysis of the total length-weight relationship suggested an allometric growth pattern among females, males and undifferentiated individuals, whereas an analysis of the entire sample suggested an isometric growth pattern. Typical and additional morphological characters were used to identify the amphioxi. High morphological variability between individuals was found, suggesting the presence of several morphotypes. Branchiostoma californiense had been previously reported as exclusively associated with bare sandy areas, but our study shows that this species can also be found in seagrass patches, using them as breeding and feeding grounds. Thus, seagrass patches are evidenced as suitable habitats for amphioxus.

SELECTION OF CITATIONS
SEARCH DETAIL
...