Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 71(3): 1185-1198, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31665496

ABSTRACT

Coupling anthesis date to the most suitable environmental conditions is critical for wheat (Triticum aestivum L.) adaptation and yield potential. Development to anthesis is controlled by temperature and photoperiod. Response to photoperiod is chiefly modulated by Ppd-1 genes, but their effect on the quantitative response to photoperiod of (i) time to anthesis and (ii) pre-anthesis phases remains largely unknown. A photoperiod-sensitive spring cultivar, Paragon, and near-isogenic lines of it carrying different combinations of Ppd-1a insensitivity alleles were tested under a wide range of photoperiods, including switches in photoperiod at the onset of stem elongation. Using multimodel inference we found that Ppd-1a alleles reduced photoperiod sensitivity of (i) emergence to anthesis and (ii) emergence to onset of stem elongation, both in a less than additive manner, while threshold photoperiod and intrinsic earliness were unaffected. Sensitivity to current photoperiod from onset of stem elongation to flag leaf and from then to anthesis was milder than for previous phases and was not related to variability in Ppd-1. However, 'memory' effects of previously experienced photoperiod on the duration from onset of stem elongation to flag leaf were related to variability in Ppd-1. The characterization and quantification provided here of the effects on development of Ppd-1 allelic combinations should help increase accuracy of genotype-to-phenotype models in predicting wheat phenology.


Subject(s)
Flowers/growth & development , Models, Biological , Photoperiod , Triticum/genetics , Triticum/growth & development
2.
J Exp Bot ; 70(4): 1339-1348, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30576503

ABSTRACT

Lengthening the pre-anthesis period of stem elongation (or late-reproductive phase, LRP) through altering photoperiod sensitivity has been suggested as a potential means to increase the number of fertile florets at anthesis (NFF) in wheat. However, little is known about the effects that the Ppd-1 genes modulating plant response to photoperiod may have on reproductive development. Here, five genotypes with either sensitive (b) or insensitive (a) alleles were grown in chambers under contrasting photoperiods (12 h or 16 h) to assess their effects. The genotypes consisted of the control cultivar Paragon (three Ppd-1b) and four near-isogenic lines of Paragon with Ppd-1a alleles introgressed from: Chinese Spring (Ppd-B1a), GS-100 (Ppd-A1a), Sonora 64 (Ppd-D1a), and Triple Insensitive (three Ppd-1a). Under a 12-h photoperiod, NFF in the genotypes followed the order three Ppd-1b > Ppd-B1a > Ppd-A1a > Ppd-D1a > three Ppd-1a. Under a 16-h photoperiod the differences were milder, but three Ppd-1b still had a greater NFF than the rest. As Ppd-1a alleles shortened the LRP, spikes were lighter and the NFF decreased. The results demonstrated for the first time that Ppd-1a decreases the maximum number of florets initiated through shortening the floret initiation phase, and this partially explained the variations in NFF. The most important impact of Ppd-1a alleles, however, was related to a reduction in survival of floret primordia, which resulted in the lower NFF. These findings reinforce the idea that an increased duration of the LRP, achieved through photoperiod sensitivity, would be useful for increasing wheat yield potential.


Subject(s)
Flowers/genetics , Genes, Plant , Photoperiod , Triticum/genetics , Alleles , Flowers/growth & development , Genotype , Triticum/growth & development
3.
Funct Plant Biol ; 45(6): 645-657, 2018 May.
Article in English | MEDLINE | ID: mdl-32290966

ABSTRACT

Fine tuning wheat phenology is of paramount importance for adaptation. A better understanding of how genetic constitution modulates the developmental responses during pre-anthesis phases would help to maintain or even increase yield potential as temperature increases due to climate change. The photoperiod-sensitive cultivar Paragon, and four near isogenic lines with different combinations of insensitivity alleles (Ppd-A1a, Ppd-B1a, Ppd-D1a or their triple stack) were evaluated under short (12h) and long (16h) photoperiods. Insensitivity alleles decreased time to anthesis and duration of the three pre-anthesis phases (vegetative, early reproductive and late reproductive), following the Ppd-D1a > Ppd-A1a > Ppd-B1a ranking of strength. Stacking them intensified the insensitivity, but had no additive effect over that of Ppd-D1a. The late reproductive phase was the most responsive, even exhibiting a qualitative response. Leaf plastochron was not affected but spikelet plastochron increased according to Ppd-1a ranking of strength. Earlier anthesis resulted from less leaves differentiated and a fine tuning effect of accelerated rate of leaf appearance. None of the alleles affected development exclusively during any particular pre-anthesis phase, which would be ideal for tailoring time to anthesis with specific partitioning of developmental time into particular phases. Other allelic variants should be further tested to this purpose.

SELECTION OF CITATIONS
SEARCH DETAIL
...