Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 1006903, 2022.
Article in English | MEDLINE | ID: mdl-36276939

ABSTRACT

Our knowledge of complex disorders has increased in the last years thanks to the identification of genetic variants (GVs) significantly associated with disease phenotypes by genome-wide association studies (GWAS). However, we do not understand yet how these GVs functionally impact disease pathogenesis or their underlying biological mechanisms. Among the multiple post-GWAS methods available, fine-mapping and colocalization approaches are commonly used to identify causal GVs, meaning those with a biological effect on the trait, and their functional effects. Despite the variety of post-GWAS tools available, there is no guideline for method eligibility or validity, even though these methods work under different assumptions when accounting for linkage disequilibrium and integrating molecular annotation data. Moreover, there is no benchmarking of the available tools. In this context, we have applied two different fine-mapping and colocalization methods to the same GWAS on major depression (MD) and expression quantitative trait loci (eQTL) datasets. Our goal is to perform a systematic comparison of the results obtained by the different tools. To that end, we have evaluated their results at different levels: fine-mapped and colocalizing GVs, their target genes and tissue specificity according to gene expression information, as well as the biological processes in which they are involved. Our findings highlight the importance of fine-mapping as a key step for subsequent analysis. Notably, the colocalizing variants, altered genes and targeted tissues differed between methods, even regarding their biological implications. This contribution illustrates an important issue in post-GWAS analysis with relevant consequences on the use of GWAS results for elucidation of disease pathobiology, drug target prioritization and biomarker discovery.

2.
Genes (Basel) ; 13(7)2022 07 15.
Article in English | MEDLINE | ID: mdl-35886042

ABSTRACT

Understanding the molecular basis of major depression is critical for identifying new potential biomarkers and drug targets to alleviate its burden on society. Leveraging available GWAS data and functional genomic tools to assess regulatory variation could help explain the role of major depression-associated genetic variants in disease pathogenesis. We have conducted a fine-mapping analysis of genetic variants associated with major depression and applied a pipeline focused on gene expression regulation by using two complementary approaches: cis-eQTL colocalization analysis and alteration of transcription factor binding sites. The fine-mapping process uncovered putative causally associated variants whose proximal genes were linked with major depression pathophysiology. Four colocalizing genetic variants altered the expression of five genes, highlighting the role of SLC12A5 in neuronal chlorine homeostasis and MYRF in nervous system myelination and oligodendrocyte differentiation. The transcription factor binding analysis revealed the potential role of rs62259947 in modulating P4HTM expression by altering the YY1 binding site, altogether regulating hypoxia response. Overall, our pipeline could prioritize putative causal genetic variants in major depression. More importantly, it can be applied when only index genetic variants are available. Finally, the presented approach enabled the proposal of mechanistic hypotheses of these genetic variants and their role in disease pathogenesis.


Subject(s)
Depressive Disorder, Major , Quantitative Trait Loci , Depression , Depressive Disorder, Major/genetics , Genomics , Humans , Transcription Factors/genetics
3.
PLoS Comput Biol ; 17(9): e1009411, 2021 09.
Article in English | MEDLINE | ID: mdl-34529669

ABSTRACT

Immunotherapies provide effective treatments for previously untreatable tumors and identifying tumor-specific epitopes can help elucidate the molecular determinants of therapy response. Here, we describe a pipeline, ISOTOPE (ISOform-guided prediction of epiTOPEs In Cancer), for the comprehensive identification of tumor-specific splicing-derived epitopes. Using RNA sequencing and mass spectrometry for MHC-I associated proteins, ISOTOPE identified neoepitopes from tumor-specific splicing events that are potentially presented by MHC-I complexes. Analysis of multiple samples indicates that splicing alterations may affect the production of self-epitopes and generate more candidate neoepitopes than somatic mutations. Although there was no difference in the number of splicing-derived neoepitopes between responders and non-responders to immune therapy, higher MHC-I binding affinity was associated with a positive response. Our analyses highlight the diversity of the immunogenic impacts of tumor-specific splicing alterations and the importance of studying splicing alterations to fully characterize tumors in the context of immunotherapies. ISOTOPE is available at https://github.com/comprna/ISOTOPE.


Subject(s)
Epitopes/genetics , Epitopes/immunology , Neoplasms/genetics , Neoplasms/immunology , Alternative Splicing/genetics , Alternative Splicing/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Carcinoma, Small Cell/genetics , Carcinoma, Small Cell/immunology , Cell Line, Tumor , Computational Biology , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Male , Melanoma/genetics , Melanoma/immunology , Models, Genetic , Models, Immunological , Mutation , Neoplasms/therapy , Protein Isoforms/genetics , Protein Isoforms/immunology , RNA Splicing/genetics , RNA Splicing/immunology , RNA-Seq
4.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-31169290

ABSTRACT

The clinical efficacy of therapeutic monoclonal antibodies for breast and colorectal cancer has greatly contributed to the improvement of patients' outcomes by individualizing their treatments according to their genomic background. However, primary or acquired resistance to treatment reduces its efficacy. In this context, the identification of biomarkers predictive of drug response would support research and development of new alternative treatments. Biomarkers play a major role in the genomic revolution, supporting disease diagnosis and treatment decision-making. Currently, several molecular biomarkers of treatment response for breast and colorectal cancer have been described. However, information on these biomarkers is scattered across several resources, and needs to be identified, collected and properly integrated to be fully exploited to inform monitoring of drug response in patients. Therefore, there is a need of resources that offer biomarker data in a harmonized manner to the user to support the identification of actionable biomarkers of response to treatment in cancer. ResMarkerDB was developed as a comprehensive resource of biomarkers of drug response in colorectal and breast cancer. It integrates data of biomarkers of drug response from existing repositories, and new data extracted and curated from the literature (referred as ResCur). ResMarkerDB currently features 266 biomarkers of diverse nature. Twenty-five percent of these biomarkers are exclusive of ResMarkerDB. Furthermore, ResMarkerDB is one of the few resources offering non-coding DNA data in response to drug treatment. The database contains more than 500 biomarker-drug-tumour associations, covering more than 100 genes. ResMarkerDB provides a web interface to facilitate the exploration of the current knowledge of biomarkers of response in breast and colorectal cancer. It aims to enhance translational research efforts in identifying actionable biomarkers of drug response in cancer.


Subject(s)
Antibodies, Neoplasm/therapeutic use , Biomarkers, Tumor , Breast Neoplasms , Colorectal Neoplasms , Databases, Factual , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...