Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Mol Biol ; 30(2): 188-209, 2021 04.
Article in English | MEDLINE | ID: mdl-33305885

ABSTRACT

Nesidiocoris tenuis (Reuter) is an efficient predatory biological control agent used throughout the Mediterranean Basin in tomato crops but regarded as a pest in northern European countries. From the family Miridae, it is an economically important insect yet very little is known in terms of genetic information and no genomic or transcriptomic studies have been published. Here, we use a linked-read sequencing strategy on a single female N. tenuis. From this, we assembled the 355 Mbp genome and delivered an ab initio, homology-based and evidence-based annotation. Along the way, the bacterial "contamination" was removed from the assembly. In addition, bacterial lateral gene transfer (LGT) candidates were detected in the N. tenuis genome. The complete gene set is composed of 24 688 genes; the associated proteins were compared to other hemipterans (Cimex lectularis, Halyomorpha halys and Acyrthosiphon pisum). We visualized the genome using various cytogenetic techniques, such as karyotyping, CGH and GISH, indicating a karyotype of 2n = 32. Additional analyses include the localization of 18S rDNA and unique satellite probes as well as pooled sequencing to assess nucleotide diversity and neutrality of the commercial population. This is one of the first mirid genomes to be released and the first of a mirid biological control agent.


Subject(s)
Heteroptera/genetics , Animals , Bacteria/genetics , Biological Control Agents , Female , Gene Transfer, Horizontal , Genome, Insect , Heteroptera/microbiology , Symbiosis
2.
Sci Rep ; 9(1): 9440, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31263114

ABSTRACT

Citrus greening or huanglongbing (HLB) is the main threat to the European citrus industry since one of its vectors, the African citrus psyllid, Trioza erytreae, has recently become established in mainland Europe. In this context, classical biological control programmes should be implemented to reduce the spread of the psyllid. The aims of this study were to: i) disentangle the parasitoid complex of T. erytreae combining morphological and molecular characterization; and ii) to study the biology of its main parasitoids in its area of origin in South Africa for their future importation into Europe. The main citrus producing areas of South Africa were surveyed during 2017. In contrast to previous studies, the parasitoid complex of T. erytreae included three species of primary parasitoids: Tamarixia dryi, Psyllaephagus pulvinatus and another parasitoid of the genus Tamarixia. Molecular analysis showed that it is a new species closely related to T. dryi. Tamarixia dryi was the most abundant parasitoid but its relative abundance varied among sampling sites. The sex ratio (males/females) of T. dryi and Tamarixia sp. decreased with T. erytreae size and became female biased when psyllid nymphs were larger than 0.6 and 1.2 mm2, respectively. These parasitoids were attacked by three species of hyperparasitoids, Aphidencyrtus cassatus, Marietta javensis and a species of the genus Aphanogmus. Aphidencyrtus cassatus, the most abundant hyperparasitoid, tended to emerge from large nymphs, and adult females lived as long as those of T. dryi. The implications of these results are discussed within the framework of the introduction of T. dryi into Europe.


Subject(s)
Citrus/parasitology , Hemiptera/physiology , Animals , DNA Barcoding, Taxonomic , Europe , Female , Hemiptera/classification , Hemiptera/growth & development , Hemiptera/parasitology , Hymenoptera/classification , Hymenoptera/physiology , Male , Nymph/parasitology , Nymph/physiology , Pest Control, Biological , Phylogeny , Seasons , South Africa
3.
Bull Entomol Res ; 102(6): 737-43, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22697801

ABSTRACT

Transgenic Bt maize expressing the Cry1Ab toxin is poorly effective for suppressing populations of two non-target Lepidoptera, Mythimna unipuncta and Helicoverpa armigera. In order to determine the mechanisms that may be involved in this poor effectiveness, last instar larvae of the two Lepidoptera were fed with a diet containing lyophilized leaves with Bt vs non-Bt toxin for different periods; additionally, some larvae fed on Bt diet were transferred to non-Bt diet for an additional period. In the experimental larvae, we measured the growth (weight) gain from just before treatment to after the end of the treatment, and the Cry1Ab contents in the hemolymph, the peritrophic membrane and its contents and midgut epithelium. Effects of the treatments on the midgut epithelium were observed by light and transmission electron microscopy. It was seen that multiple mechanisms can be involved in the low susceptibility of the two Lepidoptera. The low content of the toxin within the peritrophic membrane 48 h after ingestion indicates a high rate of toxin elimination in this space. Moreover, M. unipuncta larvae fed on the Bt diet displayed a similar growth gain index to those fed on the non-Bt diet, and showed an increasing elimination rate during the experiment. Little toxin reached the midgut epithelium, indicating a low permeability of the peritrophic membrane or a low affinity at the binding sites. Larvae fed on the Bt toxin showed rapid recovery in weight gain and in the midgut epithelium, and also showed overcompensation mechanisms.


Subject(s)
Bacterial Proteins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Moths/drug effects , Animals , Bacillus thuringiensis Toxins , Gastrointestinal Tract/drug effects , Larva/drug effects , Larva/growth & development , Larva/metabolism , Moths/growth & development , Moths/metabolism , Plants, Genetically Modified/metabolism , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...