Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 18: 77, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27036118

ABSTRACT

BACKGROUND: The immunosuppressive and anti-inflammatory properties of mesenchymal stromal cells (MSC) have prompted their therapeutic application in several autoimmune diseases, including rheumatoid arthritis. Adult MSC are finite and their clinical use is restricted by the need for long-term expansion protocols that can lead to genomic instability. Inhibition of Smad2/3 signaling in human pluripotent stem cells (hPSC) provides an infinite source of MSC that match the phenotype and functional properties of adult MSC. Here, we test the therapeutic potential of hPSC-MSC of embryonic origin (embryonic stem cell-derived mesenchymal stromal cells, hESC-MSC) in the experimental model of collagen-induced arthritis (CIA). METHODS: CIA was induced in DBA/1 mice by immunization with type II collagen (CII) in Complete Freund's Adjuvant (CFA). Mice were treated with either a single dose (10(6) cells/mouse) of hESC-MSC on the day of immunization (prophylaxis) or with three doses of hESC-MSC every other day starting on the day of arthritis onset (therapy). Arthritis severity was evaluated daily for six weeks and ten days, respectively. Frequency of Treg (FoxP3(+)), Th1 (IFNγ(+)) and Th17 (IL17(+)) CD4(+) T cells in inguinal lymph nodes (ILN) was quantified by flow cytometry. Serum levels of anti-CII antibodies were determined by ELISA. Detection of hESC-MSC and quantification of murine and human indoleamine 2,3 dioxygenase (IDO1) expression was performed by quantitative real-time PCR. Statistical differences were analyzed by ANOVA and the Mann-Whitney U test. RESULTS: Administration of hESC-MSC to mice with established arthritis reduced disease severity compared to control-treated mice. Analysis of CD4 T cell populations in treated mice showed an increase in FoxP3(+) Treg and IFNγ(+) Th1 cells but not in Th17 cells in the ILN. Anti-CII antibody levels were not affected by treatment. Migration of hESC-MSC to the ILN in treated mice was associated with the induction of murine IDO1. CONCLUSION: Treatment with hESC-MSC ameliorates CIA by inducing IFNγ(+) Th1 cells and IDO1 in the host. Thus, hESC-MSC can provide an infinite cellular source for treatment of rheumatoid arthritis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid/immunology , CD4-Positive T-Lymphocytes/immunology , Human Embryonic Stem Cells/transplantation , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mesenchymal Stem Cell Transplantation/methods , Animals , Arthritis, Experimental/enzymology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Experimental/therapy , Arthritis, Rheumatoid/pathology , Flow Cytometry , Heterografts , Human Embryonic Stem Cells/immunology , Humans , Male , Mesenchymal Stem Cells/immunology , Mice , Mice, Inbred DBA , Real-Time Polymerase Chain Reaction
2.
Arthritis Rheumatol ; 66(5): 1208-17, 2014 May.
Article in English | MEDLINE | ID: mdl-24782184

ABSTRACT

OBJECTIVE: The role of most p38 MAPK isoforms in inflammatory arthritis is not known. This study was undertaken to evaluate p38γ and p38δ deficiency in the collagen-induced arthritis (CIA) model. METHODS: Wild-type, p38γ(-/-) , p38δ(-/-) , and p38γ/δ(-/-) mice were immunized with chicken type II collagen, and disease activity was evaluated by semiquantitative scoring and histologic assessment. Serum cytokine levels and in vitro T cell cytokine responses were quantified by flow cytometry and multiplex analysis, and serum anticollagen antibody levels by enzyme-linked immunosorbent assay. Cytokine and p38 MAPK isoform expression in joints were determined by quantitative polymerase chain reaction. RESULTS: Compound p38γ and p38δ deficiency markedly reduced arthritis severity compared with that in wild-type mice, whereas lack of either p38γ or p38δ had an intermediate effect. Joint damage was minimal in arthritic p38γ/δ(-/-) mice compared with wild-type mice. The p38γ/δ(-/-) mice had lower levels of pathogenic anticollagen antibodies and interleukin-1ß (IL-1ß) and tumor necrosis factor α than controls. In vitro T cell assays showed reduced proliferation, interferon-γ (IFNγ) production, and IL-17 production by lymph node cells from p38γ/δ(-/-) mice. IL-17 and IFNγ messenger RNA expression in joints was significantly inhibited in p38γ/δ(-/-) mice. Wild-type chimeric mice with p38γ/δ(-/-) bone marrow did not show decreased CIA. CONCLUSION: Reduced disease severity in p38γ/δ(-/-) mice was associated with lower cytokine production and anticollagen antibody responses than in controls, indicating that p38γ and p38δ are crucial regulators of inflammatory joint destruction in CIA. Our findings indicate that p38γ and p38δ are potential therapeutic targets in complex diseases, such as rheumatoid arthritis, that involve innate and adaptive immune responses.


Subject(s)
Arthritis, Experimental/metabolism , Disease Progression , Mitogen-Activated Protein Kinase 12/metabolism , Mitogen-Activated Protein Kinase 13/metabolism , Animals , Disease Models, Animal , Female , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitogen-Activated Protein Kinase 12/deficiency , Mitogen-Activated Protein Kinase 12/genetics , Mitogen-Activated Protein Kinase 13/deficiency , Mitogen-Activated Protein Kinase 13/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...