Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408031

ABSTRACT

The durability of metal-metal prostheses depends on achieving a higher degree of lubrication. The beneficial effect of hyaluronic acid (HA) on the friction and wear of both natural and artificial joints has been reported. For this purpose, graphene oxide layers have been electrochemically reduced on CoCr surfaces (CoCrErGO) and subsequently functionalized with HA (CoCrErGOHA). These layers have been evaluated from the point of view of wettability and corrosion resistance in a physiological medium containing HA. The wettability was analyzed by contact angle measurements in phosphate buffer saline-hyaluronic acid (PBS-HA) solution. The corrosion behavior of functionalized CoCr surfaces was studied with electrochemical measurements. Biocompatibility, cytotoxicity, and expression of proteins related to wound healing and repair were studied in osteoblast-like MC3T3-E1 cell cultures. All of the reported results suggest that HA-functionalized CoCr surfaces, through ErGO layers in HA-containing media, exhibit higher hydrophilicity and better corrosion resistance. Related to this increase in wettability was the increase in the expressions of vimentin and ICAM-1, which favored the growth and adhesion of osteoblasts. Therefore, it is a promising material for consideration in trauma applications, with improved properties in terms of wettability for promoting the adhesion and growth of osteoblasts, which is desirable in implanted materials used for bone repair.

2.
Materials (Basel) ; 11(5)2018 May 08.
Article in English | MEDLINE | ID: mdl-29738506

ABSTRACT

Macrophages are the main cells involved in inflammatory processes and in the primary response to debris derived from wear of implanted CoCr alloys. The biocompatibility of wear particles from a high carbon CoCr alloy produced under polarization in hyaluronic acid (HA) aqueous solution was evaluated in J774A.1 mouse macrophages cultures. Polarization was applied to mimic the electrical interactions observed in living tissues. Wear tests were performed in a pin-on-disk tribometer integrating an electrochemical cell in phosphate buffer solution (PBS) and in PBS supplemented with 3 g/L HA, an average concentration that is generally found in synovial fluid, used as lubricant solution. Wear particles produced in 3 g/L HA solution showed a higher biocompatibility in J774A.1 macrophages in comparison to those elicited by particles obtained in PBS. A considerable enhancement in macrophages biocompatibility in the presence of 3 g/L of HA was further observed by the application of polarization at potentials having current densities typical of injured tissues suggesting that polarization produces an effect on the surface of the metallic material that leads to the production of wear particles that seem to be macrophage-biocompatible and less cytotoxic. The results showed the convenience of considering the influence of the electric interactions in the chemical composition of debris detached from metallic surfaces under wear corrosion to get a better understanding of the biological effects caused by the wear products.

3.
J Biomed Mater Res A ; 101(10): 2753-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23427136

ABSTRACT

The present work evaluates the biocompatibility of a fluoride surface-modified AZ31 magnesium alloy (AZ31HF) with different cell lines that coexist in the implant environment to test its potential use as a biodegradable and absorbable biomaterial for bone repair. A clear stimulation of cell proliferation and an enhancement of the mitochondrial respiratory activity were observed when mouse osteoblasts (MC3T3-E1), fibroblasts (L929), and macrophages (J774) cell lines were cultured with the modified alloy. No significant change in apoptosis or viability rates was observed when osteoblasts and fibroblasts cultures were grown in the presence of this alloy. A proteomic analysis of the MC3T3-E1 cell extracts cultured in the presence of AZ31HF showed an overexpression of proteins related with the mineralization process, which is a necessary step for bone repair. An increase in the lactate dehydrogenase activity was observed in the MC3T3-E1 and J774 cell cultures that could be a response of the oxidative stress produced by the presence of the material. This stress could be related to the increase observed in the respiratory mitochondrial activity or respiratory burst measured in theses cultures that indicate damage in the cell membranes and subsequently some cell death. Results reported here, for and against AZ31HF, should be taken into account when considering the potential use of this modified alloy in bone repair applications.


Subject(s)
Alloys/pharmacology , Fibroblasts/cytology , Fluorides/pharmacology , Macrophages/cytology , Magnesium/pharmacology , Osteoblasts/cytology , Amino Acid Sequence , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Respiration/drug effects , Cell Survival/drug effects , Coated Materials, Biocompatible/pharmacology , Electrophoresis, Gel, Two-Dimensional , Fibroblasts/drug effects , Fibroblasts/metabolism , L-Lactate Dehydrogenase/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Sequence Data , Osteoblasts/drug effects , Osteoblasts/metabolism , Oxidation-Reduction/drug effects , Peptides/chemistry , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...