Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 99(17): 8101-6, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18440805

ABSTRACT

The biosorption of several metals (Cd2+, Zn2+ and Pb2+) by orange wastes has been investigated in binary systems. Multicomponent sorption isotherms were obtained using an original procedure, similar to that proposed by Pagnanelli et al. [Pagnanelli, F., Petrangeli, M.P., Toro, L., Trifoni, M., Veglio, F., 2001a. Biosorption of metal ions on Arthrobacter sp.: biomass characterization and biosorption modelling. Environ. Sci. Technol. 34, 2773-2778] for monoelement systems, known as subsequent addition method (SAM). Experimental sorption data were analysed using an extended multicomponent Langmuir equation. The maximum sorption uptake was approximately 0.25mmol/g for the three binary systems studied. The reliability of the proposed procedure for obtaining the equilibrium data in binary systems was verified by means of a statistical F-test.


Subject(s)
Cadmium/isolation & purification , Citrus/metabolism , Environmental Monitoring/methods , Lead/isolation & purification , Waste Products , Zinc/isolation & purification , Adsorption , Biodegradation, Environmental , Models, Chemical , Temperature
2.
J Hazard Mater ; 139(1): 122-31, 2007 Jan 02.
Article in English | MEDLINE | ID: mdl-16846686

ABSTRACT

The use of orange wastes, generated in the orange juice industry, for removing cadmium from aqueous solutions has been investigated. The material was characterized by Fourier transform infrared spectroscopy and batch experiments were conducted to determine the adsorption capacity of the biomass. A strong dependence of the adsorption capacity on pH was observed, the capacity increasing as pH value rose. Kinetics and adsorption equilibrium were studied at different pH values (4-6). The adsorption process was quick and the equilibrium was attained within 3h. The maximum adsorption capacity of orange waste was found to be 0.40, 0.41 and 0.43 mmol/g at pH 4-6, respectively. The kinetic data were analysed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using four isotherm models - Langmuir, Freundlich, Sips and Redlich-Peterson. The data were fitted by non-linear regression and five error analysis methods were used to evaluate the goodness of the fit. The Elovich equation provides the greatest accuracy for the kinetic data and the Sips model the closest fit for the equilibrium data.


Subject(s)
Cadmium/isolation & purification , Citrus/chemistry , Industrial Waste , Adsorption , Biomass , Cadmium/chemistry , Hydrogen-Ion Concentration , Industrial Waste/analysis , Kinetics , Particle Size , Solutions/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...